4,483 research outputs found

    Medical Diagnosis with Multimodal Image Fusion Techniques

    Get PDF
    Image Fusion is an effective approach utilized to draw out all the significant information from the source images, which supports experts in evaluation and quick decision making. Multi modal medical image fusion produces a composite fused image utilizing various sources to improve quality and extract complementary information. It is extremely challenging to gather every piece of information needed using just one imaging method. Therefore, images obtained from different modalities are fused Additional clinical information can be gleaned through the fusion of several types of medical image pairings. This study's main aim is to present a thorough review of medical image fusion techniques which also covers steps in fusion process, levels of fusion, various imaging modalities with their pros and cons, and  the major scientific difficulties encountered in the area of medical image fusion. This paper also summarizes the quality assessments fusion metrics. The various approaches used by image fusion algorithms that are presently available in the literature are classified into four broad categories i) Spatial fusion methods ii) Multiscale Decomposition based methods iii) Neural Network based methods and iv) Fuzzy Logic based methods. the benefits and pitfalls of the existing literature are explored and Future insights are suggested. Moreover, this study is anticipated to create a solid platform for the development of better fusion techniques in medical applications

    An In-Depth Statistical Review of Retinal Image Processing Models from a Clinical Perspective

    Get PDF
    The burgeoning field of retinal image processing is critical in facilitating early diagnosis and treatment of retinal diseases, which are amongst the leading causes of vision impairment globally. Despite rapid advancements, existing machine learning models for retinal image processing are characterized by significant limitations, including disparities in pre-processing, segmentation, and classification methodologies, as well as inconsistencies in post-processing operations. These limitations hinder the realization of accurate, reliable, and clinically relevant outcomes. This paper provides an in-depth statistical review of extant machine learning models used in retinal image processing, meticulously comparing them based on their internal operating characteristics and performance levels. By adopting a robust analytical approach, our review delineates the strengths and weaknesses of current models, offering comprehensive insights that are instrumental in guiding future research and development in this domain. Furthermore, this review underscores the potential clinical impacts of these models, highlighting their pivotal role in enhancing diagnostic accuracy, prognostic assessments, and therapeutic interventions for retinal disorders. In conclusion, our work not only bridges the existing knowledge gap in the literature but also paves the way for the evolution of more sophisticated and clinically-aligned retinal image processing models, ultimately contributing to improved patient outcomes and advancements in ophthalmic care

    Multi-modality cardiac image computing: a survey

    Get PDF
    Multi-modality cardiac imaging plays a key role in the management of patients with cardiovascular diseases. It allows a combination of complementary anatomical, morphological and functional information, increases diagnosis accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. Fully-automated processing and quantitative analysis of multi-modality cardiac images could have a direct impact on clinical research and evidence-based patient management. However, these require overcoming significant challenges including inter-modality misalignment and finding optimal methods to integrate information from different modalities. This paper aims to provide a comprehensive review of multi-modality imaging in cardiology, the computing methods, the validation strategies, the related clinical workflows and future perspectives. For the computing methodologies, we have a favored focus on the three tasks, i.e., registration, fusion and segmentation, which generally involve multi-modality imaging data, either combining information from different modalities or transferring information across modalities. The review highlights that multi-modality cardiac imaging data has the potential of wide applicability in the clinic, such as trans-aortic valve implantation guidance, myocardial viability assessment, and catheter ablation therapy and its patient selection. Nevertheless, many challenges remain unsolved, such as missing modality, modality selection, combination of imaging and non-imaging data, and uniform analysis and representation of different modalities. There is also work to do in defining how the well-developed techniques fit in clinical workflows and how much additional and relevant information they introduce. These problems are likely to continue to be an active field of research and the questions to be answered in the future

    A Review on the use of Artificial Intelligence Techniques in Brain MRI Analysis

    Get PDF
    Over the past 20 years, the global research going on in Artificial Intelligence in applica-tions in medication is a venue internationally, for medical trade and creating an ener-getic research community. The Artificial Intelligence in Medicine magazine has posted a massive amount. This paper gives an overview of the history of AI applications in brain MRI analysis to research its effect at the wider studies discipline and perceive de-manding situations for its destiny. Analysis of numerous articles to create a taxono-my of research subject matters and results was done. The article is classed which might be posted between 2000 and 2018 with this taxonomy. Analyzed articles have excessive citations. Efforts are useful in figuring out popular studies works in AI primarily based on mind MRI analysis throughout specific issues. The biomedical prognosis was ruled by way of knowledge engineering research in its first decade, whilst gadget mastering, and records mining prevailed thereafter. Together these two topics have contributed a lot to the latest medical domain

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    A Review of MRI Acute Ischemic Stroke Lesion Segmentation

    Get PDF
    Immediate treatment of a stroke can minimize long-term effects and even help reduce death risk. In the ischemic stroke cases, there are two zones of injury which are ischemic core and ischemic penumbra zone. The ischemic penumbra indicates the part that is located around the infarct core that is at risk of developing a brain infarction. Recently, various segmentation methods of infarct lesion from the MRI input images were developed and these methods gave a high accuracy in the extraction and detection of the infarct core. However, only some limited works have been reported to isolate the penumbra tissues and infarct core separately. The challenges exist in ischemic core identification are traditional approach prone to error, time-consuming and tedious for medical expert which could delay the treatment. In this paper, we study and analyse the segmentation algorithms for brain MRI ischemic of different categories. The focus of the review is mainly on the segmentation algorithms of infarct core with penumbra and infarct core only. We highlight the advantages and limitations alongside the discussion of the capabilities of these segmentation algorithms and its key challenges. The paper also devised a generic structure for automated stroke lesion segmentation. The performance of these algorithms was investigated by comparing different parameters of the surveyed algorithms. In addition, a new structure of the segmentation process for segmentation of penumbra is proposed by considering the challenges remains. The best accuracy for segmentation of infarct core and penumbra tissues is 82.1% whereas 99.1% for segmentation infarct core only. Meanwhile, the shortest average computational time recorded was 3.42 seconds for segmenting 10 slices of MR images. This paper presents an inclusive analysis of the discussed papers based on different categories of the segmentation algorithm. The proposed structure is important to enable a more robust and accurate assessment in clinical practice. This could be an opportunity for the medical and engineering sector to work together in designing a complete end-to-end automatic framework in detecting stroke lesion and penumbra

    A Review on Data Fusion of Multidimensional Medical and Biomedical Data

    Get PDF
    Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    corecore