402 research outputs found

    AN APPROACH TO AUTOMATIC DETECTION of SUSPICIOUS INDIVIDUALS IN A CROWD

    Full text link
    This paper describes an approach to identify individuals with suspicious objects in a crowd. It is based on a well-known image retrieval problem as applied to mobile visual search. In many cases, the process of building a hierarchical tree uses k-means clustering followed by geometric verification. However, the number of clusters is not known in advance, and sometimes it is randomly generated. This may lead to a congested clustering which can cause problems in grouping large real-time data. To overcome this problem we have applied the Indian Buffet stochastic process approach in this paper to the clustering problem. We present examples illustrating our metho

    Continuous-time quantum computing

    Get PDF
    Quantum computation using continuous-time evolution under a natural hardware Hamiltonian is a promising near- and mid-term direction toward powerful quantum computing hardware. Continuous-time quantum computing (CTQC) encompasses continuous-time quantum walk computing (QW), adiabatic quantum computing (AQC), and quantum annealing (QA), as well as other strategies which contain elements of these three. While much of current quantum computing research focuses on the discrete-time gate model, which has an appealing similarity to the discrete logic of classical computation, the continuous nature of quantum information suggests that continuous-time quantum information processing is worth exploring. A versatile context for CTQC is the transverse Ising model, and this thesis will explore the application of Ising model CTQC to classical optimization problems. Classical optimization problems have industrial and scientific significance, including in logistics, scheduling, medicine, cryptography, hydrology and many other areas. Along with the fact that such problems often have straightforward, natural mappings onto the interactions of readily-available Ising model hardware makes classical optimization a fruitful target for CTQC algorithms. After introducing and explaining the CTQC framework in detail, in this thesis I will, through a combination of numerical, analytical, and experimental work, examine the performance of various forms of CTQC on a number of different optimization problems, and investigate the underlying physical mechanisms by which they operate.Open Acces

    Statistical evaluation of PUF implementation techniques as applied to quantum confinement semiconductors

    Get PDF
    Physically unclonable functions, or PUFs, present a means to securely identify objects, both implicit and attached, alongside several uses in conventional secure communication techniques. Many types of PUF based on varying sources of fingerprint entropy have been suggested, and the higher-level theoretical properties and implications of this primitive have been extensively discussed. However, each different prospective implementation of PUF typically approaches the practical considerations for the conversion from a unique entropy source to ultimate PUF implementation anew. These studies typically treat the intermediate processing schema, such as response binning, solely as a means to an end rather than a subject of explicit discussion and evaluation. As such, there exist few studies into developing a general framework for the optimisation and simulation of the important elements that lie between the measurement of the particular entropy source and the evaluation of the final device as a whole. This thesis seeks to outline and validate a generalised schema for the conversion of entropy source to final results, presenting the fundamental design elements and figures of merit for the process at every stage where applicable. Further to this, each stage of the process is expressed analytically, allowing the direct derivation of the ultimate figures of merit based on the measurement outcomes of the initial source of entropy. To validate, this process is applied towards the resonant tunnelling diode (RTD) as the prospective entropic unit cell. This type of semiconductor device has several properties that make it an interesting candidate upon which to base a PUF, and this work additionally seeks to outline these benefits and enumerate the general comparative figures of merit for a PUF derived therefrom

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Journal of Mathematics and Science: Collaborative Explorations

    Get PDF

    Intensional Cyberforensics

    Get PDF
    This work focuses on the application of intensional logic to cyberforensic analysis and its benefits and difficulties are compared with the finite-state-automata approach. This work extends the use of the intensional programming paradigm to the modeling and implementation of a cyberforensics investigation process with backtracing of event reconstruction, in which evidence is modeled by multidimensional hierarchical contexts, and proofs or disproofs of claims are undertaken in an eductive manner of evaluation. This approach is a practical, context-aware improvement over the finite state automata (FSA) approach we have seen in previous work. As a base implementation language model, we use in this approach a new dialect of the Lucid programming language, called Forensic Lucid, and we focus on defining hierarchical contexts based on intensional logic for the distributed evaluation of cyberforensic expressions. We also augment the work with credibility factors surrounding digital evidence and witness accounts, which have not been previously modeled. The Forensic Lucid programming language, used for this intensional cyberforensic analysis, formally presented through its syntax and operational semantics. In large part, the language is based on its predecessor and codecessor Lucid dialects, such as GIPL, Indexical Lucid, Lucx, Objective Lucid, and JOOIP bound by the underlying intensional programming paradigm.Comment: 412 pages, 94 figures, 18 tables, 19 algorithms and listings; PhD thesis; v2 corrects some typos and refs; also available on Spectrum at http://spectrum.library.concordia.ca/977460

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field
    corecore