60 research outputs found

    Multispectral scleral patterns for ocular biometric recognition

    Get PDF
    Biometrics is the science of recognizing people based on their physical or behavioral traits such as face, fingerprints, iris, and voice. Among the various traits studied in the literature, ocular biometrics has gained popularity due to the significant progress made in iris recognition. However, iris recognition is unfavorably influenced by the non-frontal gaze direction of the eye with respect to the acquisition device. In such scenarios, additional parts of the eye, such as the sclera (the white of the eye) may be of significance. In this dissertation, we investigate the use of the sclera texture and the vasculature patterns evident in the sclera as potential biometric cues. Iris patterns are better discerned in the near infrared spectrum (NIR) while vasculature patterns are better discerned in the visible spectrum (RGB). Therefore, multispectral images of the eye, consisting of both NIR and RGB channels, were used in this work in order to ensure that both the iris and the vasculature patterns are successfully imaged.;The contributions of this work include the following. Firstly, a multispectral ocular database was assembled by collecting high-resolution color infrared images of the left and right eyes of 103 subjects using the DuncanTech MS 3100 multispectral camera. Secondly, a novel segmentation algorithm was designed to localize the spacial extent of the iris, sclera and pupil in the ocular images. The proposed segmentation algorithm is a combination of region-based and edge-based schemes that exploits the multispectral information. Thirdly, different feature extraction and matching method were used to determine the potential of utilizing the sclera and the accompanying vasculature pattern as biometric cues. The three specific matching methods considered in this work were keypoint-based matching, direct correlation matching, and minutiae matching based on blood vessel bifurcations. Fourthly, the potential of designing a bimodal ocular system that combines the sclera biometric with the iris biometric was explored.;Experiments convey the efficacy of the proposed segmentation algorithm in localizing the sclera and the iris. The use of keypoint-based matching was observed to result in the best recognition performance for the scleral patterns. Finally, the possibility of utilizing the scleral patterns in conjunction with the iris for recognizing ocular images exhibiting non-frontal gaze directions was established

    Conjunctival Vasculature (CV) as a unique modality for authentication, using Steady Illumination Colour Local Ternary Pattern (SIcLTP)

    Get PDF
    it has been proved that a new biometric modality based on the patterns of conjunctival vasculature performs well in visible spectrum. The vessels of the conjunctiva could be seen on the visible part of the sclera; these vessels are very rich and contain unique details in the visible spectrum of light. In this paper we have explored the feature extraction technique for conjunctival vasculature using Steady Illumination colour Local Ternary Patterns(SIcLTP). The concept of LTP as argued in various earlier published papers is that, it is very robust to noise and gives rich information at the pixel level. In this paper before feature extraction the images are converted into YIQ colour space from RGB colour space to do away with the redundant information demonstrated by RGB colour space. Further the image similarity and dissimilarity is found out using zero-mean sum of squared differences between the two equally sized images. The results received with AUC (Area Under ROC Curve) being 0.947, demonstrates the richness of the texture pattern of conjunctival vasculature and robustness of the method being used. It is concluded that this texture pattern is a very promising biometric modality which could be used for identification

    A Convolution Neural Network Engine for Sclera Recognition

    Get PDF
    The world is shifting to the digital era in an enormous pace. This rise in the digital technology has created plenty of applications in the digital space, which demands a secured environment for transacting and authenticating the genuineness of end users. Biometric systems and its applications has seen great potentials in its usability in the tech industries. Among various biometric traits, sclera trait is attracting researchers from experimenting and exploring its characteristics for recognition systems. This paper, which is first of its kind, explores the power of Convolution Neural Network (CNN) for sclera recognition by developing a neural model that trains its neural engine for a recognition system. To do so, the proposed work uses the standard benchmark dataset called Sclera Segmentation and Recognition Benchmarking Competition (SSRBC 2015) dataset, which comprises of 734 images which are captured at different viewing angles from 30 different classes. The proposed methodology results showcases the potential of neural learning towards sclera recognition system

    Periocular Biometrics in the Visible Spectrum

    Full text link

    A robust sclera segmentation algorithm

    Get PDF
    Sclera segmentation is shown to be of significant importance for eye and iris biometrics. However, sclera segmentation has not been extensively researched as a separate topic, but mainly summarized as a component of a broader task. This paper proposes a novel sclera segmentation algorithm for colour images which operates at pixel-level. Exploring various colour spaces, the proposed approach is robust to image noise and different gaze directions. The algorithm’s robustness is enhanced by a two-stage classifier. At the first stage, a set of simple classifiers is employed, while at the second stage, a neural network classifier operates on the probabilities’ space generated by the classifiers at stage 1. The proposed method was ranked the 1st in Sclera Segmentation Benchmarking Competition 2015, part of BTAS 2015, with a precision of 95.05% corresponding to a recall of 94.56%

    A Multimodal Biometric Authentication for Smartphones

    Get PDF
    Title from PDF of title page, viewed on October 18, 2016Dissertation advisor: Reza DerakhshaniVitaIncludes bibliographical references (pages 119-127)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2015Biometrics is seen as a viable solution to ageing password based authentication on smartphones. Fingerprint biometric is leading the biometric technology for smartphones, however, owing to its high cost, major players in mobile industry are introducing fingerprint sensors only on their flagship devices, leaving most of their other devices without a fingerprint sensor. Cameras on the other hand have been seeing a constant upgrade in sensor and supporting hardware, courtesy of ‘selfies’ on all smartphones. Face, iris and visible vasculature are three biometric traits that can be captured in visible spectrum using existing cameras on smartphone. Current biometric recognition systems on smartphones rely on a single biometric trait for faster authentication thereby increasing the probability of failure to enroll, affecting the usability of the biometric system for practical purposes. While multibiometric system mitigates this problem, computational models for multimodal biometrics recognition on smartphones have scarcely been studied. This dissertation provides a practical multimodal biometric solution for existing smartphones using iris, periocular and eye vasculature biometrics. In this work, computational methods for quality analysis and feature detection of biometric data that are suitable for deployment on smartphones have been introduced. A fast, efficient feature detection algorithm (Vascular Point Detector) for identifying interest points on images garnered from both rear and front facing camera has been developed. It was observed that the retention ratio of VPD for final similarity score calculation was at least 10% higher than state of art interest point detectors such as FAST, over various datasets. An interest point suppression algorithm based on local histograms was introduced, reducing the computational footprint of matching algorithm by at least 30%. Further, experiments are presented which successfully combine multiple samples of eye vasculature, iris and periocular biometrics obtained from a single smartphone camera sensor. Several methods are explored to test the effectiveness of multi-modal and multi algorithm fusion at various levels of biometric recognition process, with the best algorithms performing under 2 second on an IPhone 5s. It is noted that the multimodal biometric system outperforms the unimodal biometric systems in terms of both performance and failure to enroll rates.Introduction -- Biometric systems -- Database -- Eye vaculature recognition -- Iris recognition in visible wavelength on smartphones -- Periocular recognition on smartphones -- Conclusions and future wor

    Advancing the technology of sclera recognition

    Get PDF
    PhD ThesisEmerging biometric traits have been suggested recently to overcome some challenges and issues related to utilising traditional human biometric traits such as the face, iris, and fingerprint. In particu- lar, iris recognition has achieved high accuracy rates under Near- InfraRed (NIR) spectrum and it is employed in many applications for security and identification purposes. However, as modern imaging devices operate in the visible spectrum capturing colour images, iris recognition has faced challenges when applied to coloured images especially with eye images which have a dark pigmentation. Other issues with iris recognition under NIR spectrum are the constraints on the capturing process resulting in failure-to-enrol, and degradation in system accuracy and performance. As a result, the research commu- nity investigated using other traits to support the iris biometric in the visible spectrum such as the sclera. The sclera which is commonly known as the white part of the eye includes a complex network of blood vessels and veins surrounding the eye. The vascular pattern within the sclera has different formations and layers providing powerful features for human identification. In addition, these blood vessels can be acquired in the visible spectrum and thus can be applied using ubiquitous camera-based devices. As a consequence, recent research has focused on developing sclera recog- nition. However, sclera recognition as any biometric system has issues and challenges which need to be addressed. These issues are mainly related to sclera segmentation, blood vessel enhancement, feature ex- traction, template registration, matching and decision methods. In addition, employing the sclera biometric in the wild where relaxed imaging constraints are utilised has introduced more challenges such as illumination variation, specular reflections, non-cooperative user capturing, sclera blocked region due to glasses and eyelashes, variation in capturing distance, multiple gaze directions, and eye rotation. The aim of this thesis is to address such sclera biometric challenges and highlight the potential of this trait. This also might inspire further research on tackling sclera recognition system issues. To overcome the vii above-mentioned issues and challenges, three major contributions are made which can be summarised as 1) designing an efficient sclera recognition system under constrained imaging conditions which in- clude new sclera segmentation, blood vessel enhancement, vascular binary network mapping and feature extraction, and template registra- tion techniques; 2) introducing a novel sclera recognition system under relaxed imaging constraints which exploits novel sclera segmentation, sclera template rotation alignment and distance scaling methods, and complex sclera features; 3) presenting solutions to tackle issues related to applying sclera recognition in a real-time application such as eye localisation, eye corner and gaze detection, together with a novel image quality metric. The evaluation of the proposed contributions is achieved using five databases having different properties representing various challenges and issues. These databases are the UBIRIS.v1, UBIRIS.v2, UTIRIS, MICHE, and an in-house database. The results in terms of segmen- tation accuracy, Equal Error Rate (EER), and processing time show significant improvement in the proposed systems compared to state- of-the-art methods.Ministry of Higher Education and Scientific Research in Iraq and the Iraqi Cultural Attach´e in Londo

    Stability and visual outcomes yielded by three intraocular trifocal lenses with same optical zone design but differing material or toricity

    Get PDF
    Purpose: To compare rotational stability, centration and visual outcomes provided by three trifocal lens models that have the same optical zone design but different material, composition, and/or toricity. Methods: The study included 78 patients with symmetric bilateral intraocular lens implantation. The lenses under evaluation were trifocal intraocular lenses made of hydrophilic acrylic material: a spherical lens 26% hydrophilic acrylic (POD FineVision), a similar lens but having a toric design (POD Toric FineVision), and a trifocal lens 25% hydrophilic acrylic material (FineVision/MicroF). Moreover, the lenses share the same optical zone design. The lenses’ rotational stability and centration were measured by means of the PIOLET software, which relies on recording and image processing techniques to determine lens rotation and centration based on slit-lamp images. We also assessed patients’ visual quality by means of 25, 40, and 80 cm VA tests. Results: The best centration results were achieved with the POD Toric FineVision model, although the differences were not statistically significant. As for lens rotation, it was below 5° in all cases under study. Regarding VA, all subjects attained at least 0.3 logMAR for far distance uncorrected VA, at 80 cm VA was about 0.2 logMAR, at 40 cm it was above 0.15 logMAR, and at 25 cm it was about 0.3 logMAR for both lens types. Conclusion: All three intraocular lens models yield excellent visual results at far, near as well as intermediate distances. The POD FineVision and POD Toric FineVision models, with double C-loop design, yielded the best results centrationwise and rotation-wise. Differences had no clinical relevance

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers
    • …
    corecore