1,565 research outputs found

    Enhancement and Noise Statistics Estimation for Non-Stationary Voiced Speech

    Get PDF

    EMD-based filtering (EMDF) of low-frequency noise for speech enhancement

    Get PDF
    An Empirical Mode Decomposition based filtering (EMDF) approach is presented as a post-processing stage for speech enhancement. This method is particularly effective in low frequency noise environments. Unlike previous EMD based denoising methods, this approach does not make the assumption that the contaminating noise signal is fractional Gaussian Noise. An adaptive method is developed to select the IMF index for separating the noise components from the speech based on the second-order IMF statistics. The low frequency noise components are then separated by a partial reconstruction from the IMFs. It is shown that the proposed EMDF technique is able to suppress residual noise from speech signals that were enhanced by the conventional optimallymodified log-spectral amplitude approach which uses a minimum statistics based noise estimate. A comparative performance study is included that demonstrates the effectiveness of the EMDF system in various noise environments, such as car interior noise, military vehicle noise and babble noise. In particular, improvements up to 10 dB are obtained in car noise environments. Listening tests were performed that confirm the results

    Pre-processing of Speech Signals for Robust Parameter Estimation

    Get PDF

    Speech Enhancement By Exploiting The Baseband Phase Structure Of Voiced Speech For Effective Non-Stationary Noise Estimation

    Get PDF
    Speech enhancement is one of the most important and challenging issues in the speech communication and signal processing field. It aims to minimize the effect of additive noise on the quality and intelligibility of the speech signal. Speech quality is the measure of noise remaining after the processing on the speech signal and of how pleasant the resulting speech sounds, while intelligibility refers to the accuracy of understanding speech. Speech enhancement algorithms are designed to remove the additive noise with minimum speech distortion.The task of speech enhancement is challenging due to lack of knowledge about the corrupting noise. Hence, the most challenging task is to estimate the noise which degrades the speech. Several approaches has been adopted for noise estimation which mainly fall under two categories: single channel algorithms and multiple channel algorithms. Due to this, the speech enhancement algorithms are also broadly classified as single and multiple channel enhancement algorithms.In this thesis, speech enhancement is studied in acoustic and modulation domains along with both amplitude and phase enhancement. We propose a noise estimation technique based on the spectral sparsity, detected by using the harmonic property of voiced segment of the speech. We estimate the frame to frame phase difference for the clean speech from available corrupted speech. This estimated frame-to-frame phase difference is used as a means of detecting the noise-only frequency bins even in voiced frames. This gives better noise estimation for the highly non-stationary noises like babble, restaurant and subway noise. This noise estimation along with the phase difference as an additional prior is used to extend the standard spectral subtraction algorithm. We also verify the effectiveness of this noise estimation technique when used with the Minimum Mean Squared Error Short Time Spectral Amplitude Estimator (MMSE STSA) speech enhancement algorithm. The combination of MMSE STSA and spectral subtraction results in further improvement of speech quality

    <strong>Non-Gaussian, Non-stationary and Nonlinear Signal Processing Methods - with Applications to Speech Processing and Channel Estimation</strong>

    Get PDF

    Reconstruction-based speech enhancement from robust acoustic features

    Get PDF
    This paper proposes a method of speech enhancement where a clean speech signal is reconstructed from a sinusoidal model of speech production and a set of acoustic speech features. The acoustic features are estimated from noisy speech and comprise, for each frame, a voicing classification (voiced, unvoiced or non-speech), fundamental frequency (for voiced frames) and spectral envelope. Rather than using different algorithms to estimate each parameter, a single statistical model is developed. This comprises a set of acoustic models and has similarity to the acoustic modelling used in speech recognition. This allows noise and speaker adaptation to be applied to acoustic feature estimation to improve robustness. Objective and subjective tests compare reconstruction-based enhancement with other methods of enhancement and show the proposed method to be highly effective at removing noise

    Estimating acoustic speech features in low signal-to-noise ratios using a statistical framework

    Get PDF
    Accurate estimation of acoustic speech features from noisy speech and from different speakers is an ongoing problem in speech processing. Many methods have been proposed to estimate acoustic features but errors increase as signal-to-noise ratios fall. This work proposes a robust statistical framework to estimate an acoustic speech vector (comprising voicing, fundamental frequency and spectral envelope) from an intermediate feature that is extracted from a noisy time-domain speech signal. The initial approach is accurate in clean conditions but deteriorates in noise and with changing speaker. Adaptation methods are then developed to adjust the acoustic models to the noise conditions and speaker. Evaluations are carried out in stationary and nonstationary noises and at SNRs from -5dB to clean conditions. Comparison with conventional methods of estimating fundamental frequency, voicing and spectral envelope reveals the proposed framework to have lowest errors in all conditions tested

    On Optimal Filtering for Speech Decomposition

    Get PDF
    • …
    corecore