1,676 research outputs found

    Impedance Source Converters for Renewable Energy Systems

    Get PDF

    Z Source Inverter Topologies-A Survey

    Get PDF
    Need for alternative energy sources to satisfy the rising demand in energy consumption elicited the research in the area of power converters/inverters. An increasing interest of using Z source inverter/converter in power generation involving renewable energy sources like wind and solar energy for both off grid and grid tied schemes were originated from 2003. This paper surveys the literature of Z source inverters/converter topologies that were developed over the years

    An Embedded Enhanced-Boost Z-Source Inverter

    Get PDF

    A Switched Quasi-Z-Source Inverter with Continuous Input Currents

    Get PDF
    Impedance source converters as single-stage power conversion alternatives can boost and regulate the output voltages of renewable energy sources. Nevertheless, they, also known as Z-source inverters (ZSIs), still suffer from limited voltage gains and higher stresses across the components. To tackle such issues, extra diodes, passive components, and active switches can be utilized in the basic ZSIs. In this paper, a modified switched-quasi-Z-source inverter (S-qZSI) is proposed, which features continuous input currents and high boosting capability to boost output voltage by minor modifications of a prior-art topology. Furthermore, the voltage stress of the active switches is reduced, which contributes to a lower cost. The operation principles are discussed comprehensively. The performance of the proposed ZSI in terms of conversion ratio, voltage gain, and stresses on the power switches and capacitors is benchmarked with selected ZSIs. Finally, simulations and experimental tests substantiate the theoretical analysis and superior performance

    Model Predictive Control of An Embedded Enhanced-Boost Z-Source Inverter

    Get PDF

    Study of Novel Power Electronic Converters for Small Scale Wind Energy Conversion Systems

    Get PDF
    This chapter proposes a study of novel power electronic converters for small scale wind energy conversion systems. In this chapter major topologies of power electronic converters that used in wind energy converter systems have been analysed. Various topologies of DC/AC single stage converters such as high boost Z-source inverters (ZSI) have been investigated. New proposed schemes for inverters such as multilevel and Z-source inverters have been studied in this proposed chapter. Multilevel converters are categorized into three major groups according to their topologies which are diode clamped multilevel converters (DCM), cascade multilevel converters (CMC) with multiple isolated dc voltage sources and flying capacitor based multilevel converters (FCMC). Z-source inverters are divided to ZSI, qZSI and trans-ZSI types. Trans-ZSI is mostly used for high step-up single stage conversions

    Enhanced performance modified discontinuous PWM technique for three phase Z-source inverter

    Get PDF
    Various industrial applications require a voltage conversion stage from DC to AC. Among them, commercial renewable energy systems (RES) need a voltage buck and/or boost stage for islanded/grid connected operation. Despite the excellent performance offered by conventional two-stage converter systems (DC-DC followed by dc-ac stages), the need for a single-stage conversion stage is attracting more interest for cost and size reduction reasons. Although voltage source inverters (VSIs) are voltage buck-only converters, single stage current source inverters (CSIs) can offer voltage boost features, although at the penalty of using a large DC-link inductor. Boost inverters are a good candidate with the demerit of complicated control strategies. The impedance source (Z-source) inverter is a high-performance competitor as it offers voltage buck/boost in addition to a reduced passive component size. Several pulse width modulation (PWM) techniques have been presented in the literature for three-phase Z-source inverters. Various common drawbacks are annotated, especially the non-linear behavior at low modulation indices and the famous trade-off between the operating range and the converter switches' voltage stress. In this paper, a modified discontinuous PWM technique is proposed for a three-phase z-source inverter offering: (i) smooth voltage gain variation, (ii) a wide operating range, (iii) reduced voltage stress, and (iv) improved total harmonic distortion (THD). Simulation, in addition to experimental results at various operating conditions, validated the proposed PWM technique's superior performance compared to the conventional PWM techniques
    • …
    corecore