2,764 research outputs found

    The Underpinnings of Workload in Unmanned Vehicle Systems

    Get PDF
    This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems

    Past, Present And Future Implications Of Human Supervisory Control In Space Missions

    Get PDF
    Achieving the United States’ Vision for future Space Exploration will necessitate far greater collaboration between humans and automated technology than previous space initiatives. However, the development of methodologies to optimize this collaboration currently lags behind development of the technologies themselves, thus potentially decreasing mission safety, efficiency and probability of success. This paper discusses the human supervisory control (HSC) implications for use in space, and outlines several areas of current automated space technology in which the function allocation between humans and machines/automation is sub-optimal or under dispute, including automated spacecraft landings, Mission Control, and wearable extra-vehicular activity computers. Based on these case studies, we show that a more robust HSC research program will be crucial to achieving the Vision for Space Exploration, especially given the limited resources under which it must be accomplished

    Operator Objective Function Guidance for a Real-time Unmanned Vehicle Scheduling Algorithm

    Get PDF
    Advances in autonomy have made it possible to invert the typical operator-to-unmanned-vehicle ratio so that asingle operator can now control multiple heterogeneous unmanned vehicles. Algorithms used in unmanned-vehicle path planning and task allocation typically have an objective function that only takes into account variables initially identified by designers with set weightings. This can make the algorithm seemingly opaque to an operator and brittle under changing mission priorities. To address these issues, it is proposed that allowing operators to dynamically modify objective function weightings of an automated planner during a mission can have performance benefits. A multiple-unmanned-vehicle simulation test bed was modified so that operators could either choose one variable or choose any combination of equally weighted variables for the automated planner to use in evaluating mission plans. Results from a human-participant experiment showed that operators rated their performance and confidence highest when using the dynamic objective function with multiple objectives. Allowing operators to adjust multiple objectives resulted in enhanced situational awareness, increased spare mental capacity, fewer interventions to modify the objective function, and no significant differences in mission performance. Adding this form of flexibility and transparency to automation in future unmanned vehicle systems could improve performance, engender operator trust, and reduce errors.Aurora Flight Sciences, U.S. Office of Naval Researc

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    An analysis of human causal factors in Unmanned Aerial Vehicle (UAV) accidents

    Get PDF
    MBA Professional ReportHuman error has been identified as the major contributor in many severe aviation mishaps, even for accidents involving Unmanned Aircraft (UA) systems. The Department of Defense (DOD) has used the Human Factors Analysis and Classification System (HFACS) taxonomy successfully for ten years to discover the human error in UA mishaps. It is important not to ignore the indisputable human presence in UA and the possible human-related causal factors in UA mishaps so we might be better able to reduce and prevent possible incidents. HFACS with its four main and 19 subcategories is a useful framework for identifying which factors have arisen historically, and which of them should have priority. The results of this study reveals that among 287 causal factors attributed to 68 accidents, 65 percent of the factors were associated with humans. Moreover, this study also discloses that the rater who categorizes the factors can differently observe, understand, and interpret the findings of mishap investigation; thus, human error may even impact the categorization phase due to the rater’s perception. The research concluded that even though HFACS carried out its functionality well, further study is needed to conduct intense statistical analysis with unlimited data and to validate HFACS with more case studies and various raters.http://archive.org/details/annalysisofhumca1094544637Captain, Turkish Air Force1st Lieutenant, Turkish ArmyApproved for public release; distribution is unlimited

    Boredom and Distraction in Multiple Unmanned Vehicle Supervisory Control

    Get PDF
    Operators currently controlling Unmanned Aerial Vehicles report significant boredom, and such systems will likely become more automated in the future. Similar problems are found in process control, commercial aviation, and medical settings. To examine the effect of boredom in such settings, a long duration low task load experiment was conducted. Three low task load levels requiring operator input every 10, 20, or 30 minutes were tested in a our-hour study using a multiple unmanned vehicle simulation environment that leverages decentralized algorithms for sometimes imperfect vehicle scheduling. Reaction times to system-generated events generally decreased across the four hours, as did participants’ ability to maintain directed attention. Overall, participants spent almost half of the time in a distracted state. The top performer spent the majority of time in directed and divided attention states. Unexpectedly, the second-best participant, only 1% worse than the top performer, was distracted almost one third of the experiment, but exhibited a periodic switching strategy, allowing him to pay just enough attention to assist the automation when needed. Indeed, four of the five top performers were distracted more than one-third of the time. These findings suggest that distraction due to boring, low task load environments can be effectively managed through efficient attention switching. Future work is needed to determine optimal frequency and duration of attention state switches given various exogenous attributes, as well as individual variability. These findings have implications for the design of and personnel selection for supervisory control systems where operators monitor highly automated systems for long durations with only occasional or rare input.This work was supported by Aurora Flight Sciences under the ONR Science of Autonomy program as well as the Office of Naval Research (ONR) under Code 34 and MURI [grant number N00014-08-C-070]

    Autonomous Collision avoidance for Unmanned aerial systems

    Get PDF
    Unmanned Aerial System (UAS) applications are growing day by day and this will lead Unmanned Aerial Vehicle (UAV) in the close future to share the same airspace of manned aircraft.This implies the need for UAS to define precise safety standards compatible with operations standards for manned aviation. Among these standards the need for a Sense And Avoid (S&A) system to support and, when necessary, sub¬stitute the pilot in the detection and avoidance of hazardous situations (e.g. midair collision, controlled flight into terrain, flight path obstacles, and clouds). This thesis presents the work come out in the development of a S&A system taking into account collision risks scenarios with multiple moving and fixed threats. The conflict prediction is based on a straight projection of the threats state in the future. The approximations introduced by this approach have the advantage of high update frequency (1 Hz) of the estimated conflict geometry. This solution allows the algorithm to capture the trajectory changes of the threat or ownship. The resolution manoeuvre evaluation is based on a optimisation approach considering step command applied to the heading and altitude autopilots. The optimisation problem takes into account the UAV performances and aims to keep a predefined minimum separation distance between UAV and threats during the resolution manouvre. The Human-Machine Interface (HMI) of this algorithm is then embedded in a partial Ground Control Station (GCS) mock-up with some original concepts for the indication of the flight condition parameters and the indication of the resolution manoeuvre constraints. Simulations of the S&A algorithm in different critical scenarios are moreover in-cluded to show the algorithm capabilities. Finally, methodology and results of the tests and interviews with pilots regarding the proposed GCS partial layout are covered

    How to keep drivers engaged while supervising driving automation? A literature survey and categorization of six solution areas

    Get PDF
    This work aimed to organise recommendations for keeping people engaged during human supervision of driving automation, encouraging a safe and acceptable introduction of automated driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory was used to propose solution areas to human supervisory control problems of sustained attention. Driving and non-driving research examples were drawn to substantiate the solution areas. Automotive manufacturers might (1) avoid this supervisory role altogether, (2) reduce it in objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles such as with gamification and/or selection/training techniques, (5) support internal driver cognitive processes and mental models and/or (6) leverage externally situated information regarding relations between the driver, the driving task, and the driving environment. Second, a cross-domain literature survey of influential human-automation interaction research was conducted for how to keep engagement/attention in supervisory control. The solution areas (via numeric theme codes) were found to be reliably applied from independent rater categorisations of research recommendations. Areas (5) and (6) were addressed by around 70% or more of the studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around 20% and 5%, respectively. The present contribution offers a guiding organisational framework towards improving human attention while supervising driving automation.submittedVersio
    • …
    corecore