221 research outputs found

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically

    On the use of context information for an improved application of data-based algorithms in condition monitoring

    Get PDF
    xi, 124 p.En el campo de la monitorización de la condición, los algoritmos basados en datos cuentan con un amplio recorrido. Desde el uso de los gráficos de control de calidad que se llevan empleando durante casi un siglo a técnicas de mayor complejidad como las redes neuronales o máquinas de soporte vectorial que se emplean para detección, diagnóstico y estimación de vida remanente de los equipos. Sin embargo, la puesta en producción de los algoritmos de monitorización requiere de un estudio exhaustivo de un factor que es a menudo obviado por otros trabajos de la literatura: el contexto. El contexto, que en este trabajo es considerado como el conjunto de factores que influencian la monitorización de un bien, tiene un gran impacto en la algoritmia de monitorización y su aplicación final. Por este motivo, es el objeto de estudio de esta tesis en la que se han analizado tres casos de uso. Se ha profundizado en sus respectivos contextos, tratando de generalizar a la problemática habitual en la monitorización de maquinaria industrial, y se ha abordado dicha problemática de monitorización de forma que solucionen el contexto en lugar de cada caso de uso. Así, el conocimiento adquirido durante el desarrollo de las soluciones puede ser transferido a otros casos de uso que cuenten con contextos similares

    On the use of context information for an improved application of data-based algorithms in condition monitoring

    Get PDF
    xi, 124 p.En el campo de la monitorización de la condición, los algoritmos basados en datos cuentan con un amplio recorrido. Desde el uso de los gráficos de control de calidad que se llevan empleando durante casi un siglo a técnicas de mayor complejidad como las redes neuronales o máquinas de soporte vectorial que se emplean para detección, diagnóstico y estimación de vida remanente de los equipos. Sin embargo, la puesta en producción de los algoritmos de monitorización requiere de un estudio exhaustivo de un factor que es a menudo obviado por otros trabajos de la literatura: el contexto. El contexto, que en este trabajo es considerado como el conjunto de factores que influencian la monitorización de un bien, tiene un gran impacto en la algoritmia de monitorización y su aplicación final. Por este motivo, es el objeto de estudio de esta tesis en la que se han analizado tres casos de uso. Se ha profundizado en sus respectivos contextos, tratando de generalizar a la problemática habitual en la monitorización de maquinaria industrial, y se ha abordado dicha problemática de monitorización de forma que solucionen el contexto en lugar de cada caso de uso. Así, el conocimiento adquirido durante el desarrollo de las soluciones puede ser transferido a otros casos de uso que cuenten con contextos similares

    Artificial Intelligence Supported EV Electric Powertrain for Safety Improvement

    Get PDF
    As an environmentally friendly transport option, electric vehicles (EVs) are endowed with the characteristics of low fossil energy consumption and low pollutant emissions. In today's growing market share of EVs, the safety and reliability of the powertrain system will be directly related to the safety of human life. Reliability problems of EV powertrains may occur in any power electronic (PE) component and mechanical part, both sudden and cumulative. These faults in different locations and degrees will continuously threaten the life of drivers and pedestrians, bringing irreparable consequences. Therefore, monitoring and predicting the real-time health status of EV powertrain is a high-priority, arduous and challenging task. The purposes of this study are to develop AI-supported effective safety improvement techniques for EV powertrains. In the first place, a literature review is carried out to illustrate the up-to-date AI applications for solving condition monitoring and fault detection issues of EV powertrains, where recent case studies between conventional methods and AI-based methods in EV applications are compared and analysed. On this ground this study, then, focuses on the theories and techniques concerning this topic so as to tackle different challenges encountered in the actual applications. In detail, first, as for diagnosing the bearing system in the earlier fault period, a novel inferable deep distilled attention network is designed to detect multiple bearing faults. Second, a deep learning and simulation driven approach that combines the domain-adversarial neural network and the lumped-parameter thermal network (LPTN) is proposed for achieve IPMSM permanent magnet temperature estimation work. Finally, to ensure the use safety of the IGBT module, deep learning -based IGBT modules’ double pulse test (DPT) efficiency enhancement is proposed and achieved via multimodal fusion networks and graph convolution networks
    corecore