312 research outputs found

    A MAC Throughput in the Wireless LAN

    Get PDF

    Design of Media Access Control Schemes for Performance Enhancement of Future Generation Wireless Systems

    Get PDF
    Wireless Local Area Networks (WLANs) now provide connectivity to many businesses, homes and educational institutions. The wireless channel itself is plagued with numerous problems, such as it does not natively allow sharing of the wireless resource. WLAN devices utilize a complex medium access control (MAC) mechanism to allow multiple users to share the wireless resource. The distributed coordination function (DCF) is the most commonly used multiple access scheme in WLANs and a member of the 802.11 standard [1]. In this thesis, two major roles of MAC protocols are examined: maximizing network throughput and service differentiation. Firstly, a novel MAC scheme is proposed that makes use of Multiple-Input, Multiple-Output (MIMO) antenna technology to improve overall network throughput. The proposed MIMO-Aware MAC (MA-MAC) scheme utilizes the beamforming feature available in MIMO systems to allow two simultaneous transmissions of the wireless channel overlapped in time. This results in increased aggregate network throughput. This proposed scheme is shown to offer better throughput and delay performance versus existing MAC schemes proposed for simultaneous transmission. In addition, this MAC scheme is able to achieve this performance in a manner compatible with the existing standard. The latter part of this thesis proposes a new Time Division Multiple Access (TDMA) based scheme for providing video, voice and data services (also known as the Triple-Play services) in a point-to-multipoint network. By dynamically allocating transmission slots, the proposed Television TDMA (TV-TDMA) scheme is shown to better meet delay requirements for video and voice traffic, and is able to achieve higher overall saturation throughput for best-effort traffic than existing Quality of Service enabled protocols

    THE INFLUENCE OF MAC BUFFER ON THE CONTENTION-BASED ACCESS SCHEME WITH BURSTING OPTION FOR IEEE 802.11E WIRELESS NETWORKS

    Get PDF
    Wireless LANs are increasingly being used for inelastic applications. Currently, there is little support for quality of service in the IEEE 802.11 MAC protocol, and IEEE task group E has defined the 802.11e MAC extension. Enhanced distributed channel access (EDCA) is a contention-based scheme of the 802.11e standard. To allow a station to transmit more than one frame from a single contention, an optional feature known as controlled frame-bursting (CFB) is introduced in the standard. In this paper, we initially performed an average analysis to determine a suitable burst duration limit. Then, a detailed evaluation and comparison of the EDCA protocol with the CFB option is carried out through simulation to quantify its performance gain. The impact of the MAC transmit buffer size is also incorporated. Accordingly, we have proposed a suitable approach to guide the configuration of the burst duration limit. It is demonstrated that an optimized CFB configuration allows the MAC protocol to achieve 30% more capacity than the basic EDCA scheme

    Easy Wireless: broadband ad-hoc networking for emergency services

    Get PDF
    Wireless ad-hoc networks will enable emergency services to continuously overview and act upon the actual status of the situation by retrieving and exchanging detailed up-to-date information between the rescue workers. Deployment of high-bandwidth, robust, self-organising ad-hoc networks will enable quicker response to typical what/where/when questions, than the more vulnerable low-bandwidth communication networks currently in use. This paper addresses a number of results of the Easy Wireless project that enable high bandwidth robust ad-hoc networking. Most of the concepts presented here have been experimentally verified and/or prototyped

    Design of Media Access Control Schemes for Performance Enhancement of Future Generation Wireless Systems

    Get PDF
    Wireless Local Area Networks (WLANs) now provide connectivity to many businesses, homes and educational institutions. The wireless channel itself is plagued with numerous problems, such as it does not natively allow sharing of the wireless resource. WLAN devices utilize a complex medium access control (MAC) mechanism to allow multiple users to share the wireless resource. The distributed coordination function (DCF) is the most commonly used multiple access scheme in WLANs and a member of the 802.11 standard [1]. In this thesis, two major roles of MAC protocols are examined: maximizing network throughput and service differentiation. Firstly, a novel MAC scheme is proposed that makes use of Multiple-Input, Multiple-Output (MIMO) antenna technology to improve overall network throughput. The proposed MIMO-Aware MAC (MA-MAC) scheme utilizes the beamforming feature available in MIMO systems to allow two simultaneous transmissions of the wireless channel overlapped in time. This results in increased aggregate network throughput. This proposed scheme is shown to offer better throughput and delay performance versus existing MAC schemes proposed for simultaneous transmission. In addition, this MAC scheme is able to achieve this performance in a manner compatible with the existing standard. The latter part of this thesis proposes a new Time Division Multiple Access (TDMA) based scheme for providing video, voice and data services (also known as the Triple-Play services) in a point-to-multipoint network. By dynamically allocating transmission slots, the proposed Television TDMA (TV-TDMA) scheme is shown to better meet delay requirements for video and voice traffic, and is able to achieve higher overall saturation throughput for best-effort traffic than existing Quality of Service enabled protocols

    Design of Media Access Control Schemes for Performance Enhancement of Future Generation Wireless Systems

    Get PDF
    Wireless Local Area Networks (WLANs) now provide connectivity to many businesses, homes and educational institutions. The wireless channel itself is plagued with numerous problems, such as it does not natively allow sharing of the wireless resource. WLAN devices utilize a complex medium access control (MAC) mechanism to allow multiple users to share the wireless resource. The distributed coordination function (DCF) is the most commonly used multiple access scheme in WLANs and a member of the 802.11 standard [1]. In this thesis, two major roles of MAC protocols are examined: maximizing network throughput and service differentiation. Firstly, a novel MAC scheme is proposed that makes use of Multiple-Input, Multiple-Output (MIMO) antenna technology to improve overall network throughput. The proposed MIMO-A ware MAC (MA-MAC) scheme utilizes the beamforming feature available in MIMO systems to allow two simultaneous transmissions of the wireless channel overlapped in time. This results in increased aggregate network throughput. This proposed scheme is shown to offer better throughput and delay performance versus existing MAC schemes proposed for simultaneous transmission. In addition, this MAC scheme is able to achieve this performance in a manner compatible with the existing standard. The latter part of this thesis proposes a new Time Division Multiple Access (TDMA) based scheme for providing video, voice and data services (also known as the Triple-Play services) in a point-to-multipoint network. By dynamically allocating transmission slots, the proposed Television TDMA (TV-TDMA) scheme is shown to better meet delay requirements for video and voice traffic, and is able to achieve higher overall saturation throughput for best-effort traffic than existing Quality of Service enabled protocols
    corecore