1,730 research outputs found

    A-MAKE: an efficient, anonymous and accountable authentication framework for WMNs

    Get PDF
    In this paper, we propose a framework, named as A-MAKE, which efficiently provides security, privacy, and accountability for communications in wireless mesh networks. More specifically, the framework provides an anonymous mutual authentication protocol whereby legitimate users can connect to network from anywhere without being identified or tracked. No single party (e.g., network operator) can violate the privacy of a user, which is provided in our framework in the strongest sense. Our framework utilizes group signatures, where the private key and the credentials of the users are generated through a secure three-party protocol. User accountability is implemented via user revocation protocol that can be executed by two semitrusted authorities, one of which is the network operator. The assumptions about the trust level of the network operator are relaxed. Our framework makes use of much more efficient signature generation and verification algorithms in terms of computation complexity than their counterparts in literature, where signature size is comparable to the shortest signatures proposed for similar purposes so far

    Anonymous attestation with user-controlled linkability

    Get PDF
    This paper is motivated by the observation that existing security models for direct anonymous attestation (DAA) have problems to the extent that insecure protocols may be deemed secure when analysed under these models. This is particularly disturbing as DAA is one of the few complex cryptographic protocols resulting from recent theoretical advances actually deployed in real life. Moreover, standardization bodies are currently looking into designing the next generation of such protocols. Our first contribution is to identify issues in existing models for DAA and explain how these errors allow for proving security of insecure protocols. These issues are exhibited in all deployed and proposed DAA protocols (although they can often be easily fixed). Our second contribution is a new security model for a class of "pre-DAA scheme", that is, DAA schemes where the computation on the user side takes place entirely on the trusted platform. Our model captures more accurately than any previous model the security properties demanded from DAA by the trusted computing group (TCG), the group that maintains the DAA standard. Extending the model from pre-DAA to full DAA is only a matter of refining the trust models on the parties involved. Finally, we present a generic construction of a DAA protocol from new building blocks tailored for anonymous attestation. Some of them are new variations on established ideas and may be of independent interest. We give instantiations for these building blocks that yield a DAA scheme more efficient than the one currently deployed, and as efficient as the one about to be standardized by the TCG which has no valid security proof. © 2013 Springer-Verlag Berlin Heidelberg

    Citizen Electronic Identities using TPM 2.0

    Full text link
    Electronic Identification (eID) is becoming commonplace in several European countries. eID is typically used to authenticate to government e-services, but is also used for other services, such as public transit, e-banking, and physical security access control. Typical eID tokens take the form of physical smart cards, but successes in merging eID into phone operator SIM cards show that eID tokens integrated into a personal device can offer better usability compared to standalone tokens. At the same time, trusted hardware that enables secure storage and isolated processing of sensitive data have become commonplace both on PC platforms as well as mobile devices. Some time ago, the Trusted Computing Group (TCG) released the version 2.0 of the Trusted Platform Module (TPM) specification. We propose an eID architecture based on the new, rich authorization model introduced in the TCGs TPM 2.0. The goal of the design is to improve the overall security and usability compared to traditional smart card-based solutions. We also provide, to the best our knowledge, the first accessible description of the TPM 2.0 authorization model.Comment: This work is based on an earlier work: Citizen Electronic Identities using TPM 2.0, to appear in the Proceedings of the 4th international workshop on Trustworthy embedded devices, TrustED'14, November 3, 2014, Scottsdale, Arizona, USA, http://dx.doi.org/10.1145/2666141.266614

    Security, Trust and Privacy (STP) Model for Federated Identity and Access Management (FIAM) Systems

    Get PDF
    The federated identity and access management systems facilitate the home domain organization users to access multiple resources (services) in the foreign domain organization by web single sign-on facility. In federated environment the user’s authentication is performed in the beginning of an authentication session and allowed to access multiple resources (services) until the current session is active. In current federated identity and access management systems the main security concerns are: (1) In home domain organization machine platforms bidirectional integrity measurement is not exist, (2) Integrated authentication (i.e., username/password and home domain machine platforms mutual attestation) is not present and (3) The resource (service) authorization in the foreign domain organization is not via the home domain machine platforms bidirectional attestation

    A Pairing-Based DAA Scheme Further Reducing TPM Resources

    Get PDF
    Direct Anonymous Attestation (DAA) is an anonymous signature scheme designed for anonymous attestation of a Trusted Platform Module (TPM) while preserving the privacy of the device owner. Since TPM has limited bandwidth and computational capability, one interesting feature of DAA is to split the signer role between two entities: a TPM and a host platform where the TPM is attached. Recently, Chen proposed a new DAA scheme that is more efficient than previous DAA schemes. In this paper, we construct a new DAA scheme requiring even fewer TPM resources. Our DAA scheme is about 5 times more efficient than Chen’s scheme for the TPM implementation using the Barreto-Naehrig curves. In addition, our scheme requires much smaller size of software code that needs to be implemented in the TPM. This makes our DAA scheme ideal for the TPM implementation. Our DAA scheme is efficient and provably secure in the random oracle model under the strong Diffie-Hellman assumption and the decisional Diffie-Hellman assumption.

    A DAA Scheme Requiring Less TPM Resources

    Get PDF
    Direct anonymous attestation (DAA) is a special digital signature primitive, which provides a balance between signer authentication and privacy. One of the most interesting properties that makes this primitive attractive in practice is its construction of signers. The signer role of DAA is split between two entities, a principal signer (a trusted platform module (TPM)) with limited computational capability and an assistant signer (a computer platform into which the TPM is embedded) with more computational power but less security tolerance. Our first contribution in this paper is a new DAA scheme that requires very few TPM resources. In fact the TPM has only to perform two exponentiations for the DAA Join algorithm and three exponentiations for the DAA Signing algorithm. We show that this new scheme has better performance than the existing DAA schemes and is provable secure based on the qq-SDH problem and DDH problem under the random oracle model. Our second contribution is a modification of the DAA game-based security model to cover the property of non-frameability
    • …
    corecore