1,720 research outputs found

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Cyber-Physical Security Strategies

    Get PDF
    Cyber-physical security describes the protection of systems with close relationships between computational functions and physical ones and addresses the issue of vulnerability to attack through both cyber and physical avenues. This describes systems in a wide variety of functions, many crucial to the function of modern society, making their security of paramount importance. The development of secure system design and attack detection strategies for each potential avenue of attack is needed to combat malicious attacks. This thesis will provide an overview of the approaches to securing different aspect of cyber-physical systems. The cyber element can be designed to better prevent unauthorized entry and to be more robust to attack while its use is evaluated for signs of ongoing intrusion. Nodes in sensor networks can be evaluated by their claims to determine the likelihood of their honesty. Control systems can be designed to be robust in cases of the failure of one component and to detect signal insertion or replay attack. Through the application of these strategies, the safety and continued function of cyber-physical systems can be improved

    Intrusion Detection in Mobile Adhoc Network with Bayesian model based MAC Identification

    Get PDF
    Mobile Ad-hoc Networks (MANETs) are a collection of heterogeneous, infrastructure less, self-organizing and battery powered mobile nodes with different resources availability and computational capabilities. The dynamic and distributed nature of MANETs makes them suitable for deployment in extreme and volatile environmental conditions. They have found applications in diverse domains such as military operations, environmental monitoring, rescue operations etc. Each node in a MANET is equipped with a wireless transmitter and receiver, which enables it to communicate with other nodes within its wireless transmission range. However, due to limited wireless communication range and node mobility, nodes in MANET must cooperate with each other to provide networking services among themselves. Therefore, each node in a MANET acts both as a host and a router. Present Intrusion Detection Systems (IDSs) for MANETs require continuous monitoring which leads to rapid depletion of a node?s battery life. To avoid this issue we propose a system to prevent intrusion in MANET using Bayesian model based MAC Identification from multiple nodes in network. Using such system we can provide lightweight burden to nodes hence improving energy efficiency

    Intrusion Detection in Mobile Ad-Hoc Networks using Bayesian Game Methodology

    Get PDF
    The dynamic and distributed nature of MANETs make them vulnerable to various types of attacks like black hole attack, traffic distortion, IP spoofing, DoS attack etc. Malicious nodes can launch attacks against other normal nodes and deteriorate the overall performance of the entire network [1�3]. Unlike in wired networks, there are no fixed checkpoints like router and switches in MANETs, where the Intrusion Detection System (IDS) can be deployed .However, due to limited wireless communication range and node mobility, nodes in MANET must cooperate with each other to provide networking services among themselves. Therefore, each node in a MANET acts both as a host and a router. Present Intrusion Detection Systems (IDSs) for MANETs require continuous monitoring which leads to rapid depletion of a node�s battery life. To avoid this issue we propose a system to prevent intrusion in MANET using Bayesian model based MAC Identification from multiple nodes in network. Using such system we can provide lightweight burden to nodes hence improving energy efficiency. Simulated results shows improvement in estimated delay and average bits transfer parameter

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore