61 research outputs found

    A Fusion Approach of RSSI and LQI for Indoor Localization System Using Adaptive Smoothers

    Get PDF

    Hybrid ToF and RSSI real-time semantic tracking with an adaptive industrial internet of things architecture

    Get PDF
    Real-time asset tracking in indoor mass production manufacturing environments can reduce losses associated with pausing a production line to locate an asset. Complemented by monitored contextual information, e.g. machine power usage, it can provide smart information, such as which components have been machined by a worn or damaged tool. Although sensor based Internet of Things (IoT) positioning has been developed, there are still key challenges when benchmarked approaches concentrate on precision, using computationally expensive filtering and iterative statistical or heuristic algorithms, as a trade-off for timeliness and scalability. Precise but high-cost hardware systems and invasive infrastructures of wired devices also pose implementation issues in the Industrial IoT (IIoT). Wireless, selfpowered sensors are integrated in this paper, using a novel, communication-economical RSSI/ToF ranging method in a proposed semantic IIoT architecture. Annotated data collection ensures accessibility, scalable knowledge discovery and flexibility to changes in consumer and business requirements. Deployed at a working indoor industrial facility the system demonstrated comparable RMS ranging accuracy (ToF 6m and RSSI 5.1m with 40m range) to existing systems tested in non-industrial environments and a 12.6-13.8m mean positioning accuracy

    On Application of Wireless Sensor Networks for Healthcare Monitoring

    Get PDF
    With the recent advances in embedded systems and very low power ,wireless tech­ nologies, there has been a great interest in the development and application of a new class of distributed Wireless body area network for health monitoring. The first part of the thesis presents a remote patient monitoring system within the scope of Body Area Network standardization. In this regime, wireless sensor networks are used to continuously acquire the patient’s Electrocardiogram signs and transmit data to the base station via IEEE.802.15. The personal Server (PS) which is responsible to provide real-time displaying, storing, and analyzing the patient’s vital signs is developed in MATLAB. It also transfers ECG streams in real-time to a remote client such as a physician or medical center through internet. The PS has the potential to be integrated with home or hospital computer systems. A prototype of this system has been developed and implemented. Tlie developed system takes advantage of two important features for healthcare monitoring: (i) ECG data acqui­ sition using wearable sensors and (ii) real-time data remote through internet. The fact that our system is interacting with sensor network nodes using MATLAB makes it distinct from other previous works. The second part is devoted to the study of indoor body-area channel model for 2.4 GHz narrowband communications. To un­ derstand the narrowband radio propagation near the body, several measurements are carried out in two separate environments for different on body locations. On the basis of these measurements, we have characterized the fading statistics on body links and we have provided a physical interpretation of our results

    Robot Localization Obtained by Using Inertial Measurements, Computer Vision, and Wireless Ranging

    Get PDF
    Robots have long been used for completing tasks that are too difficult, dangerous, or distant to be accomplished by humans. In many cases, these robots are highly specialized platforms - often expensive and capable of completing every task related to a mission\u27s objective. An alternative approach is to use multiple platforms, each less capable in terms of number of tasks and thus significantly less complex and less costly. With advancements in embedded computing and wireless communications, multiple such platforms have been shown to work together to accomplish mission objectives. In the extreme, collections of very simple robots have demonstrated emergent behavior akin to that seen in nature (e.g., bee colonies) motivating the moniker of \u27\u27swarm robotics\u27\u27 - a group of robots working collaboratively to accomplish a task. The use of robotic swarms offers the potential to solve complex tasks more efficiently than a single robot by introducing robustness and flexibility to the system. This work investigates localization in heterogeneous and autonomous robotic swarms to improve their ability to carry out exploratory missions in unknown terrain. Collaboratively, these robots can, for example, conduct sensing and mapping of an environment while simultaneously evolving a communication network. For this application, among many others, it is required to determine an accurate knowledge of the robot\u27s pose (i.e., position and orientation). The act of determining the pose of the robot is known as localization. Some low cost robots can provide location estimates using inertial measurements (i.e., odometry), however this method alone is insufficient due to cumulative errors in sensing. Image tracking and wireless localization methods are implemented in this work to increase the accuracy of localization estimates. These localization methods complement each other: image tracking yields higher accuracy than wireless, however a line-of-sight (LOS) with the target is required; wireless localization can operate under LOS or non-LOS conditions, however has issues in multipath conditions. Together, these methods can be used to improve localization results under all sight conditions. The specific contributions of this work are: (1) a concept of \u27shared sensing\u27 in which extremely simple and inexpensive robots with unreliable localization estimates are used in a heterogeneous swarm of robots in a way that increases the accuracy of localization for the simple agents and simultaneously extends the sensing capabilities of the more complex robots, (2) a description, evaluation, and discussion of various means to estimate a robot\u27s pose, (3) a method for increasing reliability of RSSI measurements for wireless ranging/localization systems by averaging RSSI measurements over both time and space, (4) a process for developing an in-field model to be used for estimating the location of a robot by leveraging the existing wireless communication system

    An approach to understand network challenges of wireless sensor network in real-world environments

    Get PDF
    The demand for large-scale sensing capabilities and scalable communication networks to monitor and control entities within smart buildings have fuelled the exponential growth in Wireless Sensor Network (WSN). WSN proves to be an attractive enabler because of its accurate sensing, low installation cost and flexibility in sensor placement. While WSN offers numerous benefits, it has yet to realise its full potential due to its susceptibility to network challenges in the environment that it is deployed. Particularly, spatial challenges in the indoor environment are known to degrade WSN communication reliability and have led to poor estimations of link quality. Existing WSN solutions often generalise all link failures and tackle them as a single entity. However, under the persistent influence of spatial challenges, failing to provide precise solutions may cause further link failures and higher energy consumption of battery-powered devices. Therefore, it is crucial to identify the causes of spatial- related link failures in order to improve WSN communication reliability. This thesis investigates WSN link failures under the influence of spatial challenges in real-world indoor environments. Novel and effective strategies are developed to evaluate the WSN communication reliability. By distinguishing between spatial challenges such as a poorly deployed environment and human movements, solutions are devised to reduce link failures and improve the lifespans of energy constraint WSN nodes. In this thesis, WSN test beds using proprietary wireless sensor nodes are developed and deployed in both controlled and uncontrolled office environments. These test beds provide diverse platforms for investigation into WSN link quality. In addition, a new data extraction feature called Network Instrumentation (NI) is developed and implemented onto the communication stacks of wireless sensor nodes to collect ZigBee PRO parameters that are under the influence of environmental dynamics. To understand the relationships between WSN and Wi-Fi devices communications, an investigation on frequency spectrum sharing is conducted between IEEE 802.15.4 and IEEE 802.11 bgn standards. It is discovered that the transmission failure of WSN nodes under persistent Wi-Fi interference is largely due to channel access failure rather than corrupted packets. The findings conclude that both technologies can co- exist as long as there is sufficient frequency spacing between Wi-Fi and WSN communication and adequate operating distance between the WSN nodes, and between the WSN nodes and the Wi-Fi interference source. Adaptive Network-based Fuzzy Inference System (ANFIS) models are developed to predict spatial challenges in an indoor environment. These challenges are namely, “no failure”, “failure due to poorly deployed environment” and “failure due to human movement”. A comparison of models has found that the best-produced model represents the properties of signal strength, channel fluctuations, and communication success rates. It is recognised that the interpretability of ANFIS models have reduced due to the “curse of dimensionality”. Hence, Non-Dominated Sorting Genetic Algorithm (NSGA-II) technique is implemented to reduce the complexity of these ANFIS models. This is followed by a Fuzzy rule sensitivity analysis, where the impacts of Fuzzy rules on model accuracy are found to be dependent on factors such as communication range and controlled or uncontrolled environment. Long-term WSN routing stability is measured, taking into account the adaptability and robustness of routing paths in the real-world environments. It is found that routing stability is subjected to the implemented routing protocol, deployed environment and routing options available. More importantly, the probability of link failures can be as high as 29.9% when a next hop’s usage rate falls less than 10%. This suggests that a less dominant next hop is subjected to more link failures and is short-lived. Overall, this thesis brings together diverse WSN test beds in real-world indoor environments and a new data extraction platform to extract link quality parameters from ZigBee PRO stack for a representative assessment of WSN link quality. This produces realistic perspectives of the interactions between WSN communication reliability and the environmental dynamics, particularly spatial challenges. The outcomes of this work include an in-depth system level understanding of real-world deployed applications and an insightful measure of large-scale WSN communication performance. These findings can be used as building blocks for a reliable and sustainable network architecture built on top of resource–constrained WSN

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Design of linear regression based localization algorithms for wireless sensor networks

    Get PDF

    AN ENERGY EFFICIENT CROSS-LAYER NETWORK OPERATION MODEL FOR MOBILE WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are modern technologies used to sense/control the environment whether indoors or outdoors. Sensor nodes are miniatures that can sense a specific event according to the end user(s) needs. The types of applications where such technology can be utilised and implemented are vast and range from households’ low end simple need applications to high end military based applications. WSNs are resource limited. Sensor nodes are expected to work on a limited source of power (e.g., batteries). The connectivity quality and reliability of the nodes is dependent on the quality of the hardware which the nodes are made of. Sensor nodes are envisioned to be either stationary or mobile. Mobility increases the issues of the quality of the operation of the network because it effects directly on the quality of the connections between the nodes

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead
    • …
    corecore