1,643 research outputs found

    A clustering particle swarm optimizer for dynamic optimization

    Get PDF
    This article is posted here with permission of the IEEE - Copyright @ 2009 IEEEIn the real world, many applications are nonstationary optimization problems. This requires that optimization algorithms need to not only find the global optimal solution but also track the trajectory of the changing global best solution in a dynamic environment. To achieve this, this paper proposes a clustering particle swarm optimizer (CPSO) for dynamic optimization problems. The algorithm employs hierarchical clustering method to track multiple peaks based on a nearest neighbor search strategy. A fast local search method is also proposed to find the near optimal solutions in a local promising region in the search space. Six test problems generated from a generalized dynamic benchmark generator (GDBG) are used to test the performance of the proposed algorithm. The numerical experimental results show the efficiency of the proposed algorithm for locating and tracking multiple optima in dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity

    A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2010 IEEEIn the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.This work was supported by the Engineering and Physical Sciences Research Council of U.K., under Grant EP/E060722/1

    Orthogonal learning particle swarm optimization

    Get PDF
    Particle swarm optimization (PSO) relies on its learning strategy to guide its search direction. Traditionally, each particle utilizes its historical best experience and its neighborhood’s best experience through linear summation. Such a learning strategy is easy to use, but is inefficient when searching in complex problem spaces. Hence, designing learning strategies that can utilize previous search information (experience) more efficiently has become one of the most salient and active PSO research topics. In this paper, we proposes an orthogonal learning (OL) strategy for PSO to discover more useful information that lies in the above two experiences via orthogonal experimental design. We name this PSO as orthogonal learning particle swarm optimization (OLPSO). The OL strategy can guide particles to fly in better directions by constructing a much promising and efficient exemplar. The OL strategy can be applied to PSO with any topological structure. In this paper, it is applied to both global and local versions of PSO, yielding the OLPSO-G and OLPSOL algorithms, respectively. This new learning strategy and the new algorithms are tested on a set of 16 benchmark functions, and are compared with other PSO algorithms and some state of the art evolutionary algorithms. The experimental results illustrate the effectiveness and efficiency of the proposed learning strategy and algorithms. The comparisons show that OLPSO significantly improves the performance of PSO, offering faster global convergence, higher solution quality, and stronger robustness

    Adopting Scenario-Based approach to solve optimal reactive power Dispatch problem with integration of wind and solar energy using improved Marine predator algorithm

    Get PDF
    The penetration of renewable energy resources into electric power networks has been increased considerably to reduce the dependence of conventional energy resources, reducing the generation cost and greenhouse emissions. The wind and photovoltaic (PV) based systems are the most applied technologies in electrical systems compared to other technologies of renewable energy resources. However, there are some complications and challenges to incorporating these resources due to their stochastic nature, intermittency, and variability of output powers. Therefore, solving the optimal reactive power dispatch (ORPD) problem with considering the uncertainties of renewable energy resources is a challenging task. Application of the Marine Predators Algorithm (MPA) for solving complex multimodal and non-linear problems such as ORPD under system uncertainties may cause entrapment into local optima and suffer from stagnation. The aim of this paper is to solve the ORPD problem under deterministic and probabilistic states of the system using an improved marine predator algorithm (IMPA). The IMPA is based on enhancing the exploitation phase of the conventional MPA. The proposed enhancement is based on updating the locations of the populations in spiral orientation around the sorted populations in the first iteration process, while in the final stage, the locations of the populations are updated their locations in adaptive steps closed to the best population only. The scenario-based approach is utilized for uncertainties representation where a set of scenarios are generated with the combination of uncertainties the load demands and power of the renewable resources. The proposed algorithm is validated and tested on the IEEE 30-bus system as well as the captured results are compared with those outcomes from the state-of-the-art algorithms. A computational study shows the superiority of the proposed algorithm over the other reported algorithms

    Load dispatch optimization of open cycle industrial gas turbine plant incorporating operational, maintenance and environmental parameters

    Get PDF
    Power generation fuel cost, unit availability and environmental rules and regulations are important parameters in power generation load dispatch optimization. Previous optimization work has not considered the later two in their formulations. The objective of this work is to develop a multi-objective optimization model and optimization algorithm for load dispatching optimization of open cycle gas turbine plant that not only consider operational parameters, but also incorporates maintenance and environmental parameters. Gas turbine performance parameters with reference to ASME PTC 22-1985 were developed and validated against an installed performance monitoring system (PMS9000) and plant performance test report. A gas turbine input-output model and emission were defined mathematically into the optimization multi-objectives function. Maintenance parameters of Equivalent Operating Hours (EOH) constraints and environmental parameters of allowable emission (NOx, CO and SO2) limits constraints were also included. The Extended Priority List and Particle Swarm Optimization (EPL-PSO) method was successfully implemented to solve the model. Four simulation tests were conducted to study and test the develop optimization software. Simulation results successfully demonstrated that multi-objectives total production cost (TPC) objective functions, the proposed EOH constraint, emissions model and constraints algorithm could be incorporated into the EPL-PSO method which provided optimum results, without violating any of the constraints as defined. A cost saving of 0.685% and 0.1157% could be obtained based on simulations conducted on actual plant condition and against benchmark problem respectively. The results of this work can be used for actual plant application and future development work for new gas turbine model or to include additional operational constraint

    A Hybrid Optimization Algorithm for Efficient Virtual Machine Migration and Task Scheduling Using a Cloud-Based Adaptive Multi-Agent Deep Deterministic Policy Gradient Technique

    Get PDF
    This To achieve optimal system performance in the quickly developing field of cloud computing, efficient resource management—which includes accurate job scheduling and optimized Virtual Machine (VM) migration—is essential. The Adaptive Multi-Agent System with Deep Deterministic Policy Gradient (AMS-DDPG) Algorithm is used in this study to propose a cutting-edge hybrid optimization algorithm for effective virtual machine migration and task scheduling. An sophisticated combination of the War Strategy Optimization (WSO) and Rat Swarm Optimizer (RSO) algorithms, the Iterative Concept of War and Rat Swarm (ICWRS) algorithm is the foundation of this technique. Notably, ICWRS optimizes the system with an amazing 93% accuracy, especially for load balancing, job scheduling, and virtual machine migration. The VM migration and task scheduling flexibility and efficiency are greatly improved by the AMS-DDPG technology, which uses a powerful combination of deterministic policy gradient and deep reinforcement learning. By assuring the best possible resource allocation, the Adaptive Multi-Agent System method enhances decision-making even more. Performance in cloud-based virtualized systems is significantly enhanced by our hybrid method, which combines deep learning and multi-agent coordination. Extensive tests that include a detailed comparison with conventional techniques verify the effectiveness of the suggested strategy. As a consequence, our hybrid optimization approach is successful. The findings show significant improvements in system efficiency, shorter job completion times, and optimum resource utilization. Cloud-based systems have unrealized potential for synergistic optimization, as shown by the integration of ICWRS inside the AMS-DDPG framework. Enabling a high-performing and sustainable cloud computing infrastructure that can adapt to the changing needs of modern computing paradigms is made possible by this strategic resource allocation, which is attained via careful computational utilization
    corecore