6 research outputs found

    Discovering Coherent Biclusters from Gene Expression Data Using Zero-Suppressed Binary Decision Diagrams

    Get PDF
    The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence. In this work, we propose a novel biclustering algorithm that exploits the zero-suppressed binary decision diagrams (ZBDDs) data structure to cope with the computational challenges. Our method can find all biclusters that satisfy specific input conditions, and it is scalable to practical gene expression data. We also present experimental results confirming the effectiveness of our approach

    Joint co-clustering: co-clustering of genomic and clinical bioimaging data

    Get PDF
    AbstractFor better understanding the genetic mechanisms underlying clinical observations, and better defining a group of potential candidates for protein-family-inhibiting therapy, it is interesting to determine the correlations between genomic, clinical data and data coming from high resolution and fluorescent microscopy. We introduce a computational method, called joint co-clustering, that can find co-clusters or groups of genes, bioimaging parameters and clinical traits that are believed to be closely related to each other based on the given empirical information. As bioimaging parameters, we quantify the expression of growth factor receptor EGFR/erb-B family in non-small cell lung carcinoma (NSCLC) through a fully-automated computer-aided analysis approach. This immunohistochemical analysis is usually performed by pathologists via visual inspection of tissue samples images. Our fully-automated techniques streamlines this error-prone and time-consuming process, thereby facilitating analysis and diagnosis. Experimental results for several real-life datasets demonstrate the high quantitative precision of our approach. The joint co-clustering method was tested with the receptor EGFR/erb-B family data on non-small cell lung carcinoma (NSCLC) tissue and identified statistically significant co-clusters of genes, receptor protein expression and clinical traits. The validation of our results with the literature suggest that the proposed method can provide biologically meaningful co-clusters of genes and traits and that it is a very promising approach to analyse large-scale biological data and to study multi-factorial genetic pathologies through their genetic alterations

    Computational methods for breast cancer diagnosis, prognosis, and treatment prediction

    Full text link
    The research presented here develops a robust reliability algorithm for the identification of reliable protein interactions that can be incorporated with a gene expression dataset to improve the algorithm performance, and novel breast cancer based diagnostic, prognostic and treatment prediction algorithms, respectively, which take into account the existing issues in order to provide a fair estimation of their performance

    Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.</p> <p>Results</p> <p>We develop a novel and efficient biclustering algorithm which can be regarded as a greedy version of an existing algorithm known as pCluster algorithm. By relaxing the constraint in homogeneity, the proposed algorithm has polynomial-time complexity in the worst case instead of exponential-time complexity as in the pCluster algorithm. Experiments on artificial datasets verify that our algorithm can identify both additive-related and multiplicative-related biclusters in the presence of overlap and noise. Biologically significant biclusters have been validated on the yeast cell-cycle expression dataset using Gene Ontology annotations. Comparative study shows that the proposed approach outperforms several existing biclustering algorithms. We also provide an interactive exploratory tool based on PC plot visualization for determining the parameters of our biclustering algorithm.</p> <p>Conclusion</p> <p>We have proposed a novel biclustering algorithm which works with PC plots for an interactive exploratory analysis of gene expression data. Experiments show that the biclustering algorithm is efficient and is capable of detecting co-regulated genes. The interactive analysis enables an optimum parameter determination in the biclustering algorithm so as to achieve the best result. In future, we will modify the proposed algorithm for other bicluster models such as the coherent evolution model.</p

    Enhanced pClustering and its applications to gene expression data

    No full text
    Clustering has been one of the most popular methods to discover useful biological insights from DNA microar-ray. An interesting paradigm is simultaneous clustering of both genes and experiments. This ā€œbiclustering ā€ paradigm aims at discovering clusters that consist of a subset of the genes showing a coherent expression pattern over a sub-set of conditions. The pClustering approach is a technique that belongs to this paradigm. Despite many theoretical ad-vantages, this technique has been rarely applied to actual gene expression data analysis. Possible reasons include the worst-case complexity of the clustering algorithm and the difficulty in interpreting clustering results. In this paper, we propose an enhanced framework for performing pCluster-ing on actual gene expression analysis. Our new framework includes an effective data preparation method, highly scal-able clustering strategies, and an intuitive result interpreta-tion scheme. The experimental result confirms the effective-ness of our approach. 1
    corecore