1,584 research outputs found

    Efficiency improvement of the frequency-domain BEM for rapid transient elastodynamic analysis

    Full text link
    The frequency-domain fast boundary element method (BEM) combined with the exponential window technique leads to an efficient yet simple method for elastodynamic analysis. In this paper, the efficiency of this method is further enhanced by three strategies. Firstly, we propose to use exponential window with large damping parameter to improve the conditioning of the BEM matrices. Secondly, the frequency domain windowing technique is introduced to alleviate the severe Gibbs oscillations in time-domain responses caused by large damping parameters. Thirdly, a solution extrapolation scheme is applied to obtain better initial guesses for solving the sequential linear systems in the frequency domain. Numerical results of three typical examples with the problem size up to 0.7 million unknowns clearly show that the first and third strategies can significantly reduce the computational time. The second strategy can effectively eliminate the Gibbs oscillations and result in accurate time-domain responses

    Fast numerical methods for non-local operators

    Full text link

    On the 3D electromagnetic quantitative inverse scattering problem: algorithms and regularization

    Get PDF
    In this thesis, 3D quantitative microwave imaging algorithms are developed with emphasis on efficiency of the algorithms and quality of the reconstruction. First, a fast simulation tool has been implemented which makes use of a volume integral equation (VIE) to solve the forward scattering problem. The solution of the resulting linear system is done iteratively. To do this efficiently, two strategies are combined. First, the matrix-vector multiplications needed in every step of the iterative solution are accelerated using a combination of the Fast Fourier Transform (FFT) method and the Multilevel Fast Multipole Algorithm (MLFMA). It is shown that this hybridMLFMA-FFT method is most suited for large, sparse scattering problems. Secondly, the number of iterations is reduced by using an extrapolation technique to determine suitable initial guesses, which are already close to the solution. This technique combines a marching-on-in-source-position scheme with a linear extrapolation over the permittivity under the form of a Born approximation. It is shown that this forward simulator indeed exhibits a better efficiency. The fast forward simulator is incorporated in an optimization technique which minimizes the discrepancy between measured data and simulated data by adjusting the permittivity profile. A Gauss-Newton optimization method with line search is employed in this dissertation to minimize a least squares data fit cost function with additional regularization. Two different regularization methods were developed in this research. The first regularization method penalizes strong fluctuations in the permittivity by imposing a smoothing constraint, which is a widely used approach in inverse scattering. However, in this thesis, this constraint is incorporated in a multiplicative way instead of in the usual additive way, i.e. its weight in the cost function is reduced with an improving data fit. The second regularization method is Value Picking regularization, which is a new method proposed in this dissertation. This regularization is designed to reconstruct piecewise homogeneous permittivity profiles. Such profiles are hard to reconstruct since sharp interfaces between different permittivity regions have to be preserved, while other strong fluctuations need to be suppressed. Instead of operating on the spatial distribution of the permittivity, as certain existing methods for edge preservation do, it imposes the restriction that only a few different permittivity values should appear in the reconstruction. The permittivity values just mentioned do not have to be known in advance, however, and their number is also updated in a stepwise relaxed VP (SRVP) regularization scheme. Both regularization techniques have been incorporated in the Gauss-Newton optimization framework and yield significantly improved reconstruction quality. The efficiency of the minimization algorithm can also be improved. In every step of the iterative optimization, a linear Gauss-Newton update system has to be solved. This typically is a large system and therefore is solved iteratively. However, these systems are ill-conditioned as a result of the ill-posedness of the inverse scattering problem. Fortunately, the aforementioned regularization techniques allow for the use of a subspace preconditioned LSQR method to solve these systems efficiently, as is shown in this thesis. Finally, the incorporation of constraints on the permittivity through a modified line search path, helps to keep the forward problem well-posed and thus the number of forward iterations low. Another contribution of this thesis is the proposal of a new Consistency Inversion (CI) algorithm. It is based on the same principles as another well known reconstruction algorithm, the Contrast Source Inversion (CSI) method, which considers the contrast currents – equivalent currents that generate a field identical to the scattered field – as fundamental unknowns together with the permittivity. In the CI method, however, the permittivity variables are eliminated from the optimization and are only reconstructed in a final step. This avoids alternating updates of permittivity and contrast currents, which may result in a faster convergence. The CI method has also been supplemented with VP regularization, yielding the VPCI method. The quantitative electromagnetic imaging methods developed in this work have been validated on both synthetic and measured data, for both homogeneous and inhomogeneous objects and yield a high reconstruction quality in all these cases. The successful, completely blind reconstruction of an unknown target from measured data, provided by the Institut Fresnel in Marseille, France, demonstrates at once the validity of the forward scattering code, the performance of the reconstruction algorithm and the quality of the measurements. The reconstruction of a numerical MRI based breast phantom is encouraging for the further development of biomedical microwave imaging and of microwave breast cancer screening in particular
    • …
    corecore