282 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Towards 6G-Enabled Internet of Things with IRS-Empowered Backscatter-Assisted WPCNs

    Get PDF
    Wireless powered communication networks (WPCNs) are expected to play a key role in the forthcoming 6G systems. However, they have not yet found their way to large-scale practical implementations due to their inherent shortcomings such as the low efficiency of energy transfer and information transmission. In this thesis, we aim to study the integration of WPCNs with other novel technologies of backscatter communication and intelligent reflecting surface (IRS) to enhance the performance and improve the efficiency of these networks so as to prepare them for being seamlessly fitted into the 6G ecosystem. We first study the incorporation of backscatter communication into conventional WPCNs and investigate the performance of backscatter-assisted WPCNs (BS-WPCNs). We then study the inclusion of IRS into the WPCN environment, where an IRS is used for improving the performance of energy transfer and information transmission in WPCNs. After that, the simultaneous integration of backscatter communication and IRS technologies into WPCNs is investigated, where the analyses show the significant performance gains that can be achieved by this integration

    Multi-user MIMO beamforming:implementation, verification in L1 capacity, and performance testing

    Get PDF
    Abstract. A certain piece of technology takes a lot of effort, research, and testing to reach the productisation phase. Radio features are implemented in layer 1 (L1) before moving to the hardware implementation phase, where their functioning is tested and verified. The target of the thesis is to implement and verify beamforming based multi-user multiple-input multiple-output (MU-MIMO) in L1 capacity and performance testing (PET) environment. The L1 testing environment mainly focuses on 4G and 5G stand-alone (SA) cases, while the focus of this thesis work is only on 5G SA technology, which features beamforming and MU-MIMO. Beamforming and MU-MIMO have been tested in an end-to-end system but not specifically in L1. The L1 testing provides a deeper analysis of beamforming and MU-MIMO in L1 and aids in problem identification at an early productisation phase, saving both time and money. L1 PET has multiple components that work together for L1 data transmission in both uplink (UL) and downlink (DL) directions and handle the verification of the transmitted data. The main components that play a key role in the implementation of multi-user MIMO beamforming concern frame design setup, message setup for UL and DL using correct channels and interfaces, transmission of the generated data in UL and DL, and message capturing at L1 end (whether correct messages are transmitted or not). For verification purposes, methods such as analysing plots from L1 log results based on comparison with radio specifications are used to determine whether the generated test output is correct or not. Finally, performance metrics, such as error vector magnitude (EVM), UE per transmission time interval (TTI), number of layers per UE, channel quality indicator (CQI), physical resource block (PRB) count, and throughput, are evaluated to assess the capacity and performance correctness of the implemented test setup

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice

    A survey of 5G technologies: regulatory, standardization and industrial perspectives

    Get PDF
    In recent years, there have been significant developments in the research on 5th Generation (5G) networks. Several enabling technologies are being explored for the 5G mobile system era. The aim is to evolve a cellular network that is intrinsically flexible and remarkably pushes forward the limits of legacy mobile systems across all dimensions of performance metrics. All the stakeholders, such as regulatory bodies, standardization authorities, industrial fora, mobile operators and vendors, must work in unison to bring 5G to fruition. In this paper, we aggregate the 5G-related information coming from the various stakeholders, in order to i) have a comprehensive overview of 5G and ii) to provide a survey of the envisioned 5G technologies; their development thus far from the perspective of those stakeholders will open up new frontiers of services and applications for next-generation wireless networks. Keywords: 5G, ITU, Next-generation wireless network
    • …
    corecore