96 research outputs found

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Advanced OFDM systems for terrestrial multimedia links

    Get PDF
    Recently, there has been considerable discussion about new wireless technologies and standards able to achieve high data rates. Due to the recent advances of digital signal processing and Very Large Scale Integration (VLSI) technologies, the initial obstacles encountered for the implementation of Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes, such as massive complex multiplications and high speed memory accesses, do not exist anymore. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard had proved to offer excellent performance for the broadcasting of multimedia streams with bitrates over ten megabits per second in difficult terrestrial propagation channels, for fixed and portable applications. Nevertheless, for mobile scenarios, improving the receiver design is not enough to achieve error-free transmission especially in presence of deep shadow and multipath fading and some modifications of the standard can be envisaged. To address long and medium range applications like live mobile wireless television production, some further modifications are required to adapt the modulated bandwidth and fully exploit channels up to 24MHz wide. For these reasons, an extended OFDM system is proposed that offers variable bandwidth, improved protection to shadow and multipath fading and enhanced robustness thanks to the insertion of deep time-interleaving coupled with a powerful turbo codes concatenated error correction scheme. The system parameters and the receiver architecture have been described in C++ and verified with extensive simulations. In particular, the study of the receiver algorithms was aimed to achieve the optimal tradeoff between performances and complexity. Moreover, the modulation/demodulation chain has been implemented in VHDL and a prototype system has been manufactured. Ongoing field trials are demonstrating the ability of the proposed system to successfully overcome the impairments due to mobile terrestrial channels, like multipath and shadow fading. For short range applications, Time-Division Multiplexing (TDM) is an efficient way to share the radio resource between multiple terminals. The main modulation parameters for a TDM system are discussed and it is shown that the 802.16a TDM OFDM physical layer fulfills the application requirements; some practical examples are given. A pre-distortion method is proposed that exploit the reciprocity of the radio channel to perform a partial channel inversion achieving improved performances with no modifications of existing receivers

    NASA Tech Briefs, July 1992

    Get PDF
    Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Design and Silicon Area Optimization of Time-Domain GNSS Receiver Baseband Architectures

    Get PDF
    The use of Global Navigation Satellite Systems (GNSSs) in a wide range of portable devices has exploded in the recent years. Demands for a lower cost while expecting longer battery life and better performance are constantly increasing. The general GNSS receiver operation and algorithms are already well studied in the literature, but the hardware architectures and designs have not been discussed in detail.This thesis introduces a high level gate count estimation method that provides good accuracy without requiring the hardware being fully specified. It is based on developing hierarchical models, which are parameterizable, while requiring minimal amount of information about the silicon technology used for the implementation. The average accuracy has been shown to be 4%.Three time-domain, real-time GNSS receiver baseband architectures are described with a discussion about various optimization methods for efficient implementation: the correlator, the matched filter, and the group correlator, which is a new architecture combining some of the features of the two first ones.Four use cases are defined for different GNSS operating modes: Acquisition, tracking, assisted GNSS, and the combination of the first three modes. A comparison is made for receiver basebands including all necessary blocks for full functionality to find out which of the three architectures provides the most silicon area efficient implementation.It is shown that the correlator offers good flexibility, but yields the highest silicon area for acquisition use cases. The matched filter is best suited for the acquisition, but has large overhead when it comes to tracking the signals. The group correlator offers a reasonably good flexibility and area efficiency in all use cases.The main contributions of the thesis are: Development of domain specific optimizations for GNSS receivers and an accurate gate count estimation method, which are applied for a quantitative comparison of different GNSS receiver architectures. The results show that no single architecture excels in all cases, and the best choice depends on the actual use case

    Carrier Synchronization in High Bit-Rate Optical Transmission Systems

    Get PDF
    In this dissertation, design of optical transmission systems with differential detection and coherent detection is briefly described. More over, algorithms for carrier synchronization and phase estimation with their implementation in high bit-rate optical transmission systems are proposed

    Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    Get PDF
    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Initial Synchronisation in the Multiple-Input Multiple-Output Aided Single- and Multi-Carrier DS-CDMA as well as DS-UWB Downlink

    No full text
    In this thesis, we propose and investigate code acquisition schemes employing both colocated and cooperative Multiple Input/Multiple Output (MIMO) aided Single-Carrier (SC) and Multi-Carrier (MC) Code Division Multiple Access (CDMA) DownLink (DL) schemes. We study their characteristics and performance in terms of both Non-Coherent (NC) and Differentially Coherent (DC) MIMO scenarios. Furthermore, we also propose iterative code acquisition schemes for the Direct Sequence-Ultra WideBand (DS-UWB) DL. There is a paucity of code acquisition techniques designed for transmit diversity aided systems. Moreover, there are no in-depth studies representing the fundamental characteristics of code acquisition schemes employing both co-located and cooperative MIMOs. Hence we investigate both NC and DC code acquisition schemes in the co-located and cooperative MIMO aided SC and MC DS-CDMA DL, when communicating over spatially uncorrelated Rayleigh channels. The issues of NC initial and post-initial acquisition schemes as well as DC schemes are studied as a function of the number of co-located antennas by quantifying the attainable correct detection probability and mean acquisition time performances. The research of DS-UWB systems has recently attracted a significant interest in both the academic and industrial community. In the DS-UWB DL, initial acquisition is required for both coarse timing as well as code phase alignment. Both of these constitute a challenging problem owing to the extremely short chip-duration of UWB systems. This leads to a huge acquisition search space size, which is represented as the product of the number of legitimate code phases in the uncertainty region of the PN code and the number of legitimate signalling pulse positions. Therefore the benefits of the iterative code acquisition schemes are analysed in terms of the achievable correct detection probability and mean acquisition time performances. Hence we significantly reduce the search space size with the aid of a Tanner graph based Message Passing (MP) technique, which is combined with the employment of beneficially selected generator polynomials, multiple receive antennas and appropriately designed multiple-component decoders. Finally, we characterise a range of two-stage iterative acquisition schemes employing iterative MP designed for a multiple receive antenna assisted DS-UWB DL scenario

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications
    corecore