542 research outputs found

    Modulo scheduling with reduced register pressure

    Get PDF
    Software pipelining is a scheduling technique that is used by some product compilers in order to expose more instruction level parallelism out of innermost loops. Module scheduling refers to a class of algorithms for software pipelining. Most previous research on module scheduling has focused on reducing the number of cycles between the initiation of consecutive iterations (which is termed II) but has not considered the effect of the register pressure of the produced schedules. The register pressure increases as the instruction level parallelism increases. When the register requirements of a schedule are higher than the available number of registers, the loop must be rescheduled perhaps with a higher II. Therefore, the register pressure has an important impact on the performance of a schedule. This paper presents a novel heuristic module scheduling strategy that tries to generate schedules with the lowest II, and, from all the possible schedules with such II, it tries to select that with the lowest register requirements. The proposed method has been implemented in an experimental compiler and has been tested for the Perfect Club benchmarks. The results show that the proposed method achieves an optimal II for at least 97.5 percent of the loops and its compilation time is comparable to a conventional top-down approach, whereas the register requirements are lower. In addition, the proposed method is compared with some other existing methods. The results indicate that the proposed method performs better than other heuristic methods and almost as well as linear programming methods, which obtain optimal solutions but are impractical for product compilers because their computing cost grows exponentially with the number of operations in the loop body.Peer ReviewedPostprint (published version

    Integrated modulo scheduling and cluster assignment for TI TMS320C64x+ architecture

    Full text link

    Clustered VLIW architecture based on queue register files

    Get PDF
    Institute for Computing Systems ArchitectureInstruction-level parallelism (ILP) is a set of hardware and software techniques that allow parallel execution of machine operations. Superscalar architectures rely most heavily upon hardware schemes to identify parallelism among operations. Although successful in terms of performance, the hardware complexity involved might limit the scalability of this model. VLIW architectures use a different approach to exploit ILP. In this case all data dependence analyses and scheduling of operations are performed at compile time, resulting in a simpler hardware organization. This allows the inclusion of a larger number of functional units (FUs) into a single chip. IN spite of this relative simplification, the scalability of VLIW architectures can be constrained by the size and number of ports of the register file. VLIW machines often use software pipelining techniques to improve the execution of loop structures, which can increase the register pressure. Furthermore, the access time of a register file can be compromised by the number of ports, causing a negative impact on the machine cycle time. For these reasons we understand that the benefits of having parallel FUs, which have motivated the investigation of alternative machine designs. This thesis presents a scalar VLIW architecture comprising clusters of FUs and private register files. Register files organised as queue structures are used as a mechanism for inter-cluster communication, allowing the enforcement of fixed latency in the process. This scheme presents better possibilities in terms of scalability as the size of the individual register files is not determined by the total number of FUs, suggesting that the silicon area may grow only linearly with respect to the total number of FUs. However, the effectiveness of such an organization depends on the efficiency of the code partitioning strategy. We have developed an algorithm for a clustered VLIW architecture integrating both software pipelining and code partitioning in a a single procedure. Experimental results show it may allow performance levels close to an unclustered machine without communication restraints. Finally, we have developed silicon area and cycle time models to quantify the scalability of performance and cost for this class of architecture

    Reusing cached schedules in an out-of-order processor with in-order issue logic

    Get PDF
    Modern processors use out-of-order processing logic to achieve high performance in Instructions Per Cycle (IPC) but this logic has a serious impact on the achievable frequency. In order to get better performance out of smaller transistors there is a trend to increase the number of cores per die instead of making the cores themselves bigger. Moreover, for throughput-oriented and server workloads, simpler in-order processors that allow more cores per die and higher design frequencies are becoming the preferred choice. Unfortunately, for other workloads this type of cores result in a lower single thread performance. There are many workloads where it is still important to achieve good single thread performance. In this thesis we present the ReLaSch processor. Its aim is to enable high IPC cores capable of running at high clock frequencies by processing the instructions using simple superscalar in-order issue logic and caching instruction groups that are dynamically scheduled in hardware after commit, that is, out of the critical path and only when really needed. Objective This thesis has several research goals: • Show that the dynamic scheduler of a conventional out-of-order processor does a lot of redundant work because it ignores the repetitiveness of code. • Propose a complete superscalar out-of-order architecture that reduces the amount of redundant work done by creating the schedules once in dedicated hardware, storing them in a cache of schedules and reusing the schedules as much as possible. • Place the scheduler out of the critical path of execution, which should be enabled by the reduction of work that it must do. Thus, the execution path of our proposed processor can be simpler than that of a conventional out-of-order processor. Proposal and results We present the \textbf{ReLaSch} processor, named after Reused Late Schedules, in which the creation of issue-groups is removed from the critical path of execution and uses a simple and small in-order issue logic. It just wakes-up and selects the instructions of a single issue-group each cycle, instead of processing the instructions of a whole issue queue. A new logic at the end of the conventional pipeline schedules the committed instructions. The new scheduler can be complex since it is not in the critical path of execution. The schedules are cached and whenever it is possible an rgroup is read and its instructions executed. The schedules are reused, lowering the pressure on the scheduling logic. In some cases, the ReLaSch processor is able to outperform a conventional out-of-order processor, because the post-commit scheduler has a broader vision of the code. For instance, while ReLaSch can schedule together two independent instructions that are distant in the code, a conventional out-oforder processor only issues them in the same cycle if both are in-flight. The ReLaSch processor predicts the branch targets, memory aliases and latencies at scheduling time, out of the critical path. The prediction is based on the most recent executions at scheduling time. Furthermore, most of the register renaming process is performed by the scheduler and is removed from the execution pipeline. Our experiments show that ReLaSch has the same average IPC as our reference out-of-order processor and is clearly better than the reference inorder processor (1.55 speed-up). In all cases it outperforms the in-order processor and in 23 benchmarks out of 40 it has a higher IPC than the reference out-of-order processor

    An automated OpenCL FPGA compilation framework targeting a configurable, VLIW chip multiprocessor

    Get PDF
    Modern system-on-chips augment their baseline CPU with coprocessors and accelerators to increase overall computational capacity and power efficiency, and thus have evolved into heterogeneous systems. Several languages have been developed to enable this paradigm shift, including CUDA and OpenCL. This thesis discusses a unified compilation environment to enable heterogeneous system design through the use of OpenCL and a customised VLIW chip multiprocessor (CMP) architecture, known as the LE1. An LLVM compilation framework was researched and a prototype developed to enable the execution of OpenCL applications on the LE1 CPU. The framework fully automates the compilation flow and supports work-item coalescing to better utilise the CPU cores and alleviate the effects of thread divergence. This thesis discusses in detail both the software stack and target hardware architecture and evaluates the scalability of the proposed framework on a highly precise cycle-accurate simulator. This is achieved through the execution of 12 benchmarks across 240 different machine configurations, as well as further results utilising an incomplete development branch of the compiler. It is shown that the problems generally scale well with the LE1 architecture, up to eight cores, when the memory system becomes a serious bottleneck. Results demonstrate superlinear performance on certain benchmarks (x9 for the bitonic sort benchmark with 8 dual-issue cores) with further improvements from compiler optimisations (x14 for bitonic with the same configuration

    Late allocation and early release of physical registers

    Get PDF
    The register file is one of the critical components of current processors in terms of access time and power consumption. Among other things, the potential to exploit instruction-level parallelism is closely related to the size and number of ports of the register file. In conventional register renaming schemes, both register allocation and releasing are conservatively done, the former at the rename stage, before registers are loaded with values, and the latter at the commit stage of the instruction redefining the same register, once registers are not used any more. We introduce VP-LAER, a renaming scheme that allocates registers later and releases them earlier than conventional schemes. Specifically, physical registers are allocated at the end of the execution stage and released as soon as the processor realizes that there will be no further use of them. VP-LAER enhances register utilization, that is, the fraction of allocated registers having a value to be read in the future. Detailed cycle-level simulations show either a significant speedup for a given register file size or a reduction in the register file size for a given performance level, especially for floating-point codes, where the register file pressure is usually high.Peer ReviewedPostprint (published version

    Structural optimization of numerical programs for high-level synthesis

    No full text
    This thesis introduces a new technique, and its associated tool SOAP, to automatically perform source-to-source optimization of numerical programs, specifically targeting the trade-off among numerical accuracy, latency, and resource usage as a high-level synthesis flow for FPGA implementations. A new intermediate representation, MIR, is introduced to carry out the abstraction and optimization of numerical programs. Equivalent structures in MIRs are efficiently discovered using methods based on formal semantics by taking into account axiomatic rules from real arithmetic, such as associativity, distributivity and others, in tandem with program equivalence rules that enable control-flow restructuring and eliminate redundant array accesses. For the first time, we bring rigorous approaches from software static analysis, specifically formal semantics and abstract interpretation, to bear on program transformation for high-level synthesis. New abstract semantics are developed to generate a computable subset of equivalent MIRs from an original MIR. Using formal semantics, three objectives are calculated for each MIR representing a pipelined numerical program: the accuracy of computation and an estimate of resource utilization in FPGA and the latency of program execution. The optimization of these objectives produces a Pareto frontier consisting of a set of equivalent MIRs. We thus go beyond existing literature by not only optimizing the precision requirements of an implementation, but changing the structure of the implementation itself. Using SOAP to optimize the structure of a variety of real world and artificially generated arithmetic expressions in single precision, we improve either their accuracy or the resource utilization by up to 60%. When applied to a suite of computational intensive numerical programs from PolyBench and Livermore Loops benchmarks, SOAP has generated circuits that enjoy up to a 12x speedup, with a simultaneous 7x increase in accuracy, at a cost of up to 4x more LUTs.Open Acces
    • …
    corecore