552 research outputs found

    Linear Precoding Designs for Amplify-and-Forward Multiuser Two-Way Relay Systems

    Full text link
    Two-way relaying can improve spectral efficiency in two-user cooperative communications. It also has great potential in multiuser systems. A major problem of designing a multiuser two-way relay system (MU-TWRS) is transceiver or precoding design to suppress co-channel interference. This paper aims to study linear precoding designs for a cellular MU-TWRS where a multi-antenna base station (BS) conducts bi-directional communications with multiple mobile stations (MSs) via a multi-antenna relay station (RS) with amplify-and-forward relay strategy. The design goal is to optimize uplink performance, including total mean-square error (Total-MSE) and sum rate, while maintaining individual signal-to-interference-plus-noise ratio (SINR) requirement for downlink signals. We show that the BS precoding design with the RS precoder fixed can be converted to a standard second order cone programming (SOCP) and the optimal solution is obtained efficiently. The RS precoding design with the BS precoder fixed, on the other hand, is non-convex and we present an iterative algorithm to find a local optimal solution. Then, the joint BS-RS precoding is obtained by solving the BS precoding and the RS precoding alternately. Comprehensive simulation is conducted to demonstrate the effectiveness of the proposed precoding designs.Comment: 13 pages, 12 figures, Accepted by IEEE TW

    Sum Rate and Fairness Analysis for the MU-MIMO Downlink under PSK Signalling: Interference Suppression vs Exploitation

    Get PDF
    In this paper, we analyze the sum rate performance of multi-user multiple-input multiple-output (MU-MIMO) systems, with a finite constellation phase-shift keying (PSK) input alphabet. We analytically calculate and compare the achievable sum rate in three downlink transmission scenarios: 1) without precoding, 2) with zero forcing (ZF) precoding 3) with closed form constructive interference (CI) precoding technique. In light of this, new analytical expressions for the average sum rate are derived in the three cases, and Monte Carlo simulations are provided throughout to validate the analysis. Furthermore, based on the derived expressions, a power allocation scheme that can ensure fairness among the users is also proposed. The results in this work demonstrate that, the CI strictly outperforms the other two schemes, and the performance gap between the considered schemes increases with increase in the MIMO size. In addition, the CI provides higher fairness and the power allocation algorithm proposed in this paper can achieve maximum fairness index

    A Low-Complexity Precoding Scheme for the Downlink of Multi-Cell Multi-User MIMO AF System

    Get PDF
    Because of its simplicity, amplify-and-forward (AF) is one of the most popular cooperative relaying technique. Relays are used in cooperative communication to improve reliability, coverage or spectral efficiency of cell-edge users. However, relays tend to increase the interferences seen by users of adjacent cells, particularly by the cell-edge users, when used in multi-cell systems. In this paper, we propose a low-complexity precoding scheme to mitigate the effect of other-cell interference (OCI) in cooperative communication. The scheme is designed by taking into account the interference plus noise covariance matrix of each user for mitigating the interference at each receiver by means of precoding at the relay node. Simulation results show the effectiveness of the proposed scheme, both in terms of sum-rate and computational complexity, when compared to other existing OCI-aware precoding algorithms for AF

    Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems

    Get PDF
    Intelligent reflecting surfaces (IRSs) have emerged as a revolutionary solution to enhance wireless communications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition, symbol-level precoding (SLP) has attracted considerable attention recently due to its advantages in converting multiuser interference (MUI) into useful signal energy. Therefore, it is of interest to investigate the employment of IRS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser channels. In this article, we focus on joint symbol-level precoding and reflecting designs in IRS-enhanced multiuser multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate the significant performance improvement introduced by the IRS and illustrate the effectiveness of our proposed algorithms
    • …
    corecore