23,211 research outputs found

    Analysis of Underlaid D2D-Enhanced Cellular Networks: Interference Management and Proportional Fair Scheduler

    Full text link
    © 2013 IEEE. Device-to-device (D2D) communications have been proposed as a promising technology to improve network capacity and user experiences in the future mobile networks such as heterogeneous networks with densely deployed small cells, but it has not yet been fully incorporated into the existing cellular networks. Interference management is one of the critical issues when D2D communications using uplink resources and coexisting with conventional cellular communications, especially in the ultra-dense networks (UNDs). In this paper, we address the critical issue of interference management by a mode selection method, which is based on the maximum received signal strength (MRSS) for each D2D transmitter (TU). To analyze the capacity of a more practical D2D-enhanced network, we consider that the typical user is no longer a random user, i.e., random user selection by a round-robin (RR) scheduler, as assumed in most studies in the literature. Instead, a cellular user with the maximum proportional fair (PF) metric is chosen by its serving base station as the typical user, which is referred to as the PF scheduler in the cellular tier. Furthermore, we theoretically study the performance in terms of the coverage probability and the area spectral efficiency (ASE) for both the cellular network and the D2D one with the consideration of the PF scheduler in UDNs. Analytical results are obtained, and the accuracy of the proposed analytical framework is validated through Monte Carlo simulations. Through our theoretical and numerical analyses, we quantify the performance gains brought by D2D communications and the PF scheduler in cellular networks, and we find an optimum mode selection threshold β to maximize the total ASE in the network

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    • …
    corecore