513 research outputs found

    Interference Management in Lte Downlink Networks

    Full text link

    Stochastic geometry based dynamic fractional frequency reuse for OFDMA systems

    Get PDF
    Fractional Frequency Reuse (FFR) has been acknowledged as an efficient Interference Management (IM) technique, which offers significant capacity enhancement and improves cell edge coverage with low complexity of implementation. The performance of cellular system greatly depends on the spatial configuration of base stations (BSs). In literature, FFR has been analyzed mostly with cellular networks described by Hexagon Grid Model (HGM). HGM is neither tractable nor scalable to the dense deployment of next generation wireless networks. Moreover, the perfect geometry based HGM tends to overestimate the system's performance and not able to reflect the reality. In this paper, we use the stochastic geometry approach; FFR is analyzed with cellular network modeled by homogeneous Poisson Point Process (PPP). PPP model provides complete randomness in terms of BS deployment, which captures the real network scenario. A dynamic FFR scheme is proposed in this article, which take into account the randomness of the cell coverage area described by Voronoi tessellation. It is shown that the proposed scheme outperforms the traditional fixed frequency allocation schemes in terms of capacity and capacity density

    Intercell interference mitigation in long term evolution (LTE) and LTE-advanced

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Bandwidth is one of the limited resources in Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks. Therefore, new resource allocation techniques such as the frequency reuse are needed to increase the capacity in LTE and LTE-A. However, the system performance is severely degraded using the same frequency in adjacent cells due to increase of intercell interference. Therefore, the intercell interference management is a critical point to improve the performance of the cellular mobile networks. This thesis aims to mitigate intercell interference in the downlink LTE and LTE-A networks. The first part of this thesis introduces a new intercell interference coordination scheme to mitigate downlink intercell interference in macrocell-macrocell scenario based on user priority and using fuzzy logic system (FLS). A FLS is an expert system which maps the inputs to outputs using “IF...THEN” rules and an aggregation method. Then, the final output is obtained through a deffuzifaction approach. Since this thesis aims to mitigate interference in downlink LTE networks, the inputs of FLS are selected from important metrics such as throughput, signal to interference plus noise ratio and so on. Simulation results demonstrate the efficacy of the proposed scheme to improve the system performance in terms of cell throughput, cell edge throughput and delay when compared with reuse factor one. Thereafter, heterogeneous networks (HetNets) are studied which are used to increase the coverage and capacity of system. The focus of the next part of this thesis is picocell because it is one of the important low power nodes in HetNets which can efficiently improve the overall system capacity and coverage. However, new challenges arise to intercell interference management in macrocell-picocell scenario. Three enhanced intercell interference coordination (eICIC) schemes are proposed in this thesis to mitigate the interference problem. In the first scheme, a dynamic cell range expansion (CRE) approach is combined with a dynamic almost blank subframe (ABS) using fuzzy logic system. In the second scheme, a fuzzy q-learning (FQL) approach is used to find the optimum ABS and CRE offset values for both full buffer traffic and video streaming traffic. In FQL, FLS is combined by q-learning approach to optimally select the best consequent part of each FLS rule. In the third proposed eICIC scheme, the best location of ABSs in each frame is determined using Genetic Algorithm such that the requirements of video streaming traffic can be met. Simulation results show that the system performance can be improved through the proposed schemes. Finally, the optimum CRE offset value and the required number of ABSs will be mathematically formulated based on the outage probability, ergodic rate and minimum required throughput of users using stochastic geometry tool. The results are an analytical formula that leads to a good initial estimate through a simple approach to analyse the impact of system parameters on CRE offset value and number of ABSs

    Inter-cell Interference Management Technique for Multi-Cell LTE-A Network

    Get PDF
    In modern cellular system such as LTE Advanced (LTE-A), frequency reuse scheme is targeted to be applied to fulfill the requirement of high capacity broadband access and high spectrum efficiency. But this kind of frequency planning may lead to the worse inter-cell interference (ICI) level experienced especially by a user located at the cell edge. Soft Frequency Reuse (SFR) is considered as an effective way to mitigate inter-cell interference and maintain capacity. We propose a power division SFR, known as multi level SFR technique to minimize ICI in a designed LTE-A network for sub-urban environment. Service area of LTE-A network was first developed to deploy particular number of eNB by using LTE network planning tools in the frequency of 1800 MHz with the use of SISO (Single Input Single Output) antennas. Coverage dimensioning and propagation consideration determine LTE-A parameters which were used in the simulation. Monte carlo simulation is executed to examine the performance of SFR for LTE-A downlink transmission to address different power ratio and traffic loads problem. Both performance of cell edge users and overall cell performance are evaluated in terms of CINR, BLER, and throughput. Performance with SFR is also compared with the classical frequency reuse one and three
    corecore