49 research outputs found

    Acceleration Skinning: Kinematics-Driven Cartoon Effects for Articulated Characters

    Get PDF
    Secondary effects are key to adding fluidity and style to animation. This thesis introduces the idea of “Acceleration Skinning” following a recent well-received technique, Velocity Skinning, to automatically create secondary motion in character animation by modifying the standard pipeline for skeletal rig skinning. These effects, which animators may refer to as squash and stretch or drag, attempt to create an illusion of inertia. In this thesis, I extend the Velocity Skinning technique to include acceleration for creating a wider gamut of cartoon effects. I explore three new deformers that make use of this Acceleration Skinning framework: followthrough, centripetal stretch, and centripetal lift deformers. The followthrough deformer aims at recreating this classic effect defined in the fundamental principles of animation. The centripetal stretch and centripetal lift deformers use rotational motion to create radial stretching and lifting effects, as the names suggest. I explore the use of effect-specific time filtering when combining these various deformations together, allowing for more stylized and aesthetic results. I finally conclude with a production evaluation, exploring possible ways in which these techniques can be used to enhance the work of an animator without losing the essence of their art

    Dynamic skin deformation using finite difference solutions for character animation

    Get PDF
    We present a new skin deformation method to create dynamic skin deformations in this paper. The core elements of our approach are a dynamic deformation model, an efficient data-driven finite difference solution, and a curve-based representation of 3D models. We first reconstruct skin deformation models at different poses from the taken photos of a male human arm movement to achieve real deformed skin shapes. Then, we extract curves from these reconstructed skin deformation models. A new dynamic deformation model is proposed to describe physics of dynamic curve deformations, and its finite difference solution is developed to determine shape changes of the extracted curves. In order to improve visual realism of skin deformations, we employ data-driven methods and introduce skin shapes at the initial and final poses into our proposed dynamic deformation model. Experimental examples and comparisons made in this paper indicate that our proposed dynamic skin deformation technique can create realistic deformed skin shapes efficiently with a small data size

    Skin Deformation Methods for Interactive Character Animation

    Get PDF
    Character animation is a vital component of contemporary computer games, animated feature films and virtual reality applications. The problem of creating appealing character animation can best be described by the title of the animation bible: “The Illusion of Life”. The focus is not on completing a given motion task, but more importantly on how this motion task is performed by the character. This does not necessarily require realistic behavior, but behavior that is believable. This of course includes the skin deformations when the character is moving. In this paper, we focus on the existing research in the area of skin deformation, ranging from skeleton-based deformation and volume preserving techniques to physically based skinning methods. We also summarize the recent contributions in deformable and soft body simulations for articulated characters, and discuss various geometric and example-based approaches

    State of the Art in Skinning Techniques for Articulated Deformable Characters

    Get PDF
    Skinning is an indispensable component of the content creation pipeline for character animation in the context of feature films, video games, and in the special effects industry. Skinning techniques define the deformation of the character skin for every animation frame according to the current state of skeletal joints. In this state of the art report, we focus on the existing research in the areas of skeleton-based deformation, volume preserving techniques and physically based skinning methods. We also summarize the recent research in deformable and soft bodies simulations for articulated characters, and discuss various geometric and examples-based approaches

    Comparing and Evaluating Real Time Character Engines for Virtual Environments

    Get PDF
    As animated characters increasingly become vital parts of virtual environments, then the engines that drive these characters increasingly become vital parts of virtual environment software. This paper gives an overview of the state of the art in character engines, and proposes a taxonomy of the features that are commonly found in them. This taxonomy can be used as a tool for comparison and evaluation of different engines. In order to demonstrate this we use it to compare three engines. The first is Cal3D, the most commonly used open source engine. We also introduce two engines created by the authors, Piavca and HALCA. The paper ends with a brief discussion of some other popular engines

    Алгоритмічно-програмний метод компенсації дефектів DQ-скінінгу

    Get PDF
    Дану дипломну роботу присвячено розробці методу пост-обробки тривимірної моделі, що дозволяє компенсувати дефекти скінінгу дуальними кватерніонами. Розроблений метод дозволяє значною мірою покращити якість анімації в зонах, де дефекти скінінгу подвійними кватерніонами найбільш помітні, та оминає проблемні зони, де дефекти скінінгу менш помітні та потребують більш складних розрахунків для повноцінного усунення, забезпечуючи плавний перехід між цими зонами без розривів. В рамках дипломної роботи також розроблено програмну реалізацію запропонованого методу у вигляді плагіна для рушія Unity, що використовує розрахункові шейдери для підвищення швидкодії, підтримує роботу з цільовими формами, встановлення коефіцієнта компенсації як для моделі в цілому, так і для окремих вертексів, має швидкодію, близьку до вбудованого скінінгу (при використанні компілятора IL2CPP), автоматично попереджає розробника про розповсюджені помилки налаштування та сумісний з графічними API DirectX, OpenGL, Vulkan та Metal. Було проведено емпіричні виміри швидкодії розробленої імплементації, згідно з якими розроблена імплементація скінінгу дуальними кватерніонами повільніша за вбудований лінійний скінінг рушія лише на 20%, а додаткова пост-обробка моделі сповільнює скінінг ще на 8% у найгіршому випадку, проте для досягнення високої швидкодії необхідне використання компілятора IL2CPP.This thesis is dedicated to the development of a 3-dimensional model post-processing method, that allows to reduce the artifacts of dual quaternion skinning. The proposed method allows to significantly improve the visual quality of animation in areas, where the artifacts are most obvious, while omitting the problematic areas, where the artifacts are less noticeable and require more complex calculations to remove and providing a smooth transitions between such zones. A software implementation of the proposed method was developed in a form of a plugin for Unity engine, that performs calculations in compute shaders for increased performance, supports blend shapes, allows setting the compensation coefficient both for the model as a whole and for separate vertices, displays performance speed comparable to that of built-in skinning (as long as IL2CPP compiler is used), automatically detects and fixes common setup errors and is compatible with API DirectX, OpenGL, Vulkan and Metal. A benchmark of the developed implementation was performed, according to which the developed implementation of DQ skinning is only 20% slower than built-in linear skinning system and the additional post-processing of the model slows down the skinning by additional 8% in worst-case scenario. Though, in order to achieve such performance, IL2CPP compiler must be used

    A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint

    Get PDF
    3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy term. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which is naturally data-driven. We mainly survey recent research works from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed

    Automatic skeletonization and skin attachment for realistic character animation.

    Get PDF
    The realism of character animation is associated with a number of tasks ranging from modelling, skin defonnation, motion generation to rendering. In this research we are concerned with two of them: skeletonization and weight assignment for skin deformation. The fonner is to generate a skeleton, which is placed within the character model and links the motion data to the skin shape of the character. The latter assists the modelling of realistic skin shape when a character is in motion. In the current animation production practice, the task of skeletonization is primarily undertaken by hand, i.e. the animator produces an appropriate skeleton and binds it with the skin model of a character. This is inevitably very time-consuming and costs a lot of labour. In order to improve this issue, in this thesis we present an automatic skeletonization framework. It aims at producing high-quality animatible skeletons without heavy human involvement while allowing the animator to maintain the overall control of the process. In the literature, the tenn skeletonization can have different meanings. Most existing research on skeletonization is in the remit of CAD (Computer Aided Design). Although existing research is of significant reference value to animation, their downside is the skeleton generated is either not appropriate for the particular needs of animation, or the methods are computationally expensive. Although some purpose-build animation skeleton generation techniques exist, unfortunately they rely on complicated post-processing procedures, such as thinning and pruning, which again can be undesirable. The proposed skeletonization framework makes use of a new geometric entity known as the 3D silhouette that is an ordinary silhouette with its depth information recorded. We extract a curve skeleton from two 3D silhouettes of a character detected from its two perpendicular projections. The skeletal joints are identified by down sampling the curve skeleton, leading to the generation of the final animation skeleton. The efficiency and quality are major performance indicators in animation skeleton generation. Our framework achieves the former by providing a 2D solution to the 3D skeletonization problem. Reducing in dimensions brings much faster performances. Experiments and comparisons are carried out to demonstrate the computational simplicity. Its accuracy is also verified via these experiments and comparisons. To link a skeleton to the skin, accordingly we present a skin attachment framework aiming at automatic and reasonable weight distribution. It differs from the conventional algorithms in taking topological information into account during weight computation. An effective range is defined for a joint. Skin vertices located outside the effective range will not be affected by this joint. By this means, we provide a solution to remove the influence of a topologically distant, hence highly likely irrelevant joint on a vertex. A user-defined parameter is also provided in this algorithm, which allows different deformation effects to be obtained according to user's needs. Experiments and comparisons prove that the presented framework results in weight distribution of good quality. Thus it frees animators from tedious manual weight editing. Furthermore, it is flexible to be used with various deformation algorithms

    Implicit muscle models for interactive character skinning

    Get PDF
    En animation de personnages 3D, la déformation de surface, ou skinning, est une étape cruciale. Son rôle est de déformer la représentation surfacique d'un personnage pour permettre son rendu dans une succession de poses spécifiées par un animateur. La plausibilité et la qualité visuelle du résultat dépendent directement de la méthode de skinning choisie. Sa rapidité d'exécution et sa simplicité d'utilisation sont également à prendre en compte pour rendre possible son usage interactif lors des sessions de production des artistes 3D. Les différentes méthodes de skinning actuelles se divisent en trois catégories. Les méthodes géométriques sont rapides et simples d'utilisation, mais leur résultats manquent de plausibilité. Les approches s'appuyant sur des exemples produisent des résultats réalistes, elles nécessitent en revanche une base de données d'exemples volumineuse, et le contrôle de leur résultat est fastidieux. Enfin, les algorithmes de simulation physique sont capables de modéliser les phénomènes dynamiques les plus complexes au prix d'un temps de calcul souvent prohibitif pour une utilisation interactive. Les travaux décrits dans cette thèse s'appuient sur Implicit Skinning, une méthode géométrique corrective utilisant une représentation implicite des surfaces, qui permet de résoudre de nombreux problèmes rencontrés avec les méthodes géométriques classiques, tout en gardant des performances permettant son usage interactif. La contribution principale de ces travaux est un modèle d'animation qui prend en compte les effets des muscles des personnages et de leur interactions avec d'autres éléments anatomiques, tout en bénéficiant des avantages apportés par Implicit Skinning. Les muscles sont représentés par une surface d'extrusion le long d'axes centraux. Les axes des muscles sont contrôlés par une méthode de simulation physique simplifiée. Cette représentation permet de modéliser les collisions des muscles entre eux et avec les os, d'introduire des effets dynamiques tels que rebonds et secousses, tout en garantissant la conservation du volume, afin de représenter le comportement réel des muscles. Ce modèle produit des déformations plus plausibles et dynamiques que les méthodes géométriques de l'état de l'art, tout en conservant des performances suffisantes pour permettre son usage dans une session d'édition interactive. Elle offre de plus aux infographistes un contrôle intuitif sur la forme des muscles pour que les déformations obtenues se conforment à leur vision artistique.Surface deformation, or skinning is a crucial step in 3D character animation. Its role is to deform the surface representation of a character to be rendered in the succession of poses specified by an animator. The quality and plausiblity of the displayed results directly depends on the properties of the skinning method. However, speed and simplicity are also important criteria to enable their use in interactive editing sessions. Current skinning methods can be divided in three categories. Geometric methods are fast and simple to use, but their results lack plausibility. Example-based approaches produce realistic results, yet they require a large database of examples while remaining tedious to edit. Finally, physical simulations can model the most complex dynamical phenomena, but at a very high computational cost, making their interactive use impractical. The work presented in this thesis are based on, Implicit Skinning, is a corrective geometric approach using implicit surfaces to solve many issues of standard geometric skinning methods, while remaining fast enough for interactive use. The main contribution of this work is an animation model that adds anatomical plausibility to a character by representing muscle deformations and their interactions with other anatomical features, while benefiting from the advantages of Implicit Skinning. Muscles are represented by an extrusion surface along a central axis. These axes are driven by a simplified physics simulation method, introducing dynamic effects, such as jiggling. The muscle model guarantees volume conservation, a property of real-life muscles. This model adds plausibility and dynamics lacking in state-of-the-art geometric methods at a moderate computational cost, which enables its interactive use. In addition, it offers intuitive shape control to animators, enabling them to match the results with their artistic vision
    corecore