2,048 research outputs found

    Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems

    Get PDF
    A phase-shifted current control can be employed to mitigate certain harmonics induced by the diode rectifiers and silicon-controlled rectifiers as the front ends of multiple parallel adjustable speed drive (ASD) systems. However, the effectiveness of the phase-shifted control relies on the loading condition of each drive unit as well as the number of drives in parallel. In order to enhance the harmonic cancellation by means of the phase-shifted current control, the currents drawn by the rectifiers should be maintained almost at the same level. Thus, this paper first analyzes the impact of unequal loading among the parallel drives, and a scheme to enhance the performance is introduced to improve the quality of the total grid current, where partial loading operation should be enabled. Simulation and experimental case studies on multidrive systems have demonstrated that the enhanced phase-shifted current control is a cost-effective solution to multiple ASD systems in terms of harmonic cancellation

    A Modular Active Front-End Rectifier with Electronic Phase-Shifting for Harmonic Mitigation in Motor Drive Applications

    Get PDF
    In this paper, an electronic phase-shifting strategy has been optimized for a multiparallel configuration of line-commutated rectifiers with a common dc-bus voltage used in motor drive application. This feature makes the performance of the system independent of the load profile and maximizes its harmonic reduction ability. In order to further reduce the generated low-order harmonics, a dc-link current modulation scheme and its phase-shift values of multidrive systems have been optimized. Analysis, simulations, and experiments have been carried out to verify the proposed method

    A hybrid control method to suppress the three time fundamental frequency neutral-point voltage fluctuation in a VIENNA rectifier

    Get PDF
    This paper presents a solution to the control of the three times fundamental frequency fluctuation of the neutral-point in a VIENNA rectifier. A hybrid method combining a dynamic adjustment factor with a voltage deviation control of the split DC-link is proposed. The fluctuation of the neutral-point has been analyzed and the reason for the three times fundamental frequency fluctuation has been described using a mathematic model. As well as minimizing the three times fundamental frequency component in the neutral-point voltage the proposed control method also provides immunity to the influence of changes in the capacitor voltage. Furthermore, significant fluctuation in the neutral-point voltage caused by asymmetric capacitor parameters or unbalanced load can be effectively reduced by using a hybrid control method combining additional adjustment coefficients. The feasibility and effectiveness of the proposed strategy has been verified through the presented simulation and experimental results

    STEROWANIE ORAZ SYNCHRONIZACJA DWUPOZIOMOWEGO FALOWNIKA NAPIĘCIA W WARUNKACH PRZEJŚCIOWEJ ASYMETRII NAPIĘĆ SIECI

    Get PDF
    This paper presents the operation of grid tied, two level voltage source inverter (VSI) during network voltage unbalance. The control system was implemented in synchronous rotating reference frame dq0 (SRF). Two types of control structures were investigated herein. First utilizes the Double Decoupled SRF Phase-locked loop (DDSRF-PLL) synchronisation with positive and negative sequence currents control. Second one is simplified system that does not provide symmetrical components decomposition and decoupling for synchronisation. Simulation results exhibited a superior performance of the DDSRF-PLL control system under grid voltage unbalance.Niniejszy artykuł przedstawia pracę dwupoziomowego falownika napięcia współpracującego z siecią, podczas przejściowej asymetrii napięć. System sterowania został zaimplementowany w wirującym układzie synchronicznym dq0. Przeanalizowano dwa typy sterowania. W pierwszym zastosowano metodę synchronizacji z odprzęganiem DDSRF-PLL wraz z możliwością kontroli prądów składowej zgodnej i przeciwnej. Drugi natomiast w swoje uproszczeni formie nie pozwalała na sterowanie obu składowych symetrycznych, zabrakło również odprzęgania podczas synchronizacji z siecią. Wyniki symulacji pokazały o wiele lepsze działanie pierwszej metody sterowania

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Power and frequency control of an offshore wind farm connected to grid through an HVDC link with LCC-based rectifier

    Get PDF
    Mención Internacional en el título de doctorThere is an increasing interest in the use of line-commutated converter (LCC) technology to connect large offshore wind farms (OWFs) placed far from the coast by means of a high voltage direct current (HVDC) link. This is due to the better features of LCCs compared to voltage-source converters in terms of cost, reliability and efficiency. However, this technology requires a frequency control in the OWF to allow the operation of both the wind turbine generator systems (WTGSs) and the LCC rectifier. Therefore, this Thesis presents two frequency control proposals. First, a centralized voltage and frequency control for an OWF connected through LCC-rectifier-based HVDC link is proposed. It is derived from an enhanced LCC-rectifier station average-value model which indicates that the active power balance at the point of common coupling drives the OWF voltage while the corresponding reactive power balance drives the OWF frequency. Even though voltage control cannot be applied in case of using a diode rectifier, the voltage magnitude variation is clamped between acceptable values. As a second proposal, a decentralized frequency control for the diode-rectifier-based HVDC link connection of OWFs is also presented. This control is based on a reactive power / frequency droop which allows the WTGSs to reach synchronous operation and equally share the reactive power without the need of communications among the WTGSs. Moreover, the control proposals do not rely on a phase-locked loop, so controls are not subject to grid disturbances or measurement noise. Another important specification of the proposed control strategies is that they do not modify the active power control channel of the WTGSs. Finally, the stability and the simulation results to assess the performance of both control proposals are studied.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Alireza Nami.- Secretario: Oriol Gomis Bellmunt.- Vocal: Ana Belén Morales Martíne

    Design analysis of levitation facility for space processing applications

    Get PDF
    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand

    Synchronverter-based control for wind power

    Get PDF
    More and more attention has been paid to the energy crisis due to the increasing energy demand from industrial and commercial applications. The utilisation of wind power, which is considered as one of the most promising renewable energy sources, has grown rapidly in the last three decades. In recent years, many power converter techniques have been developed to integrate wind power with the electrical grid. The use of power electronic converters allows for variable speed operation of wind turbines, and enhanced power extraction. This work, which is supported by EPSRC and Nheolis under the DHPA scheme, focuses on the design and analysis of control systems for wind power. In this work, two of the most popular AC-DC-AC topologies with permanent magnet synchronous generators (PMSG) have been developed. One consists of an uncontrollable rectifier, a boost converter and an inverter and a current control scheme is proposed to achieve the maximum power point tracking (MPPT). In the control strategy, the output current of the uncontrollable rectifier is controlled by a boost converter according to the current reference, which is determined by a climbing algorithm, to achieve MPPT. The synchronverter technology has been applied to control the inverter for the grid-connection. An experimental setup based on DSP has been designed to implement all the above mentioned experiments. In addition, a synchronverter-based parallel control strategy, which consists of a frequency droop loop and a voltage droop loop to achieve accurate sharing of real power and reactive power respectively, has been further studied. Moreover, a control strategy based on the synchronverter has been presented to force the inverter to have capacitive output impedance, so that the quality of the output voltage is improved. Abstract The other topology consists of a full-scale back-to-back converter, of which the rectifier is controllable. Two control strategies have been proposed to operate a three-phase rectifier to mimic a synchronous motor, following the idea of synchronverters to operate inverters to mimic synchronous generators. In the proposed schemes, the real power extracted from the source and the output voltage are the control variables, respectively, hence they can be employed in different applications. Furthermore, improved control strategies are proposed to self-synchronise with the grid. This does not only improve the performance of the system but also considerably reduces the complexity of the overall controller. All experiments have been implemented on a test rig based on dSPACE to demonstrate the excellent performance of the proposed control strategies with unity power factor, sinusoidal currents and good dynamics. Finally, an original control strategy based on the synchronverter technology has been proposed for back-to-back converters in wind power applications to make the whole system behave as a generator-motor-generator system
    corecore