466 research outputs found

    Combining Crop Models and Remote Sensing for Yield Prediction: Concepts, Applications and Challenges for Heterogeneous Smallholder Environments

    Get PDF
    JRC and CCAFS jointly organized a workshop on June 13-14, 2012 in Ispra, Italy with the aim to advance the state-of-knowledge of data assimilation for crop yield forecasting in general, to address challenges and needs for successful applications of data assimilation in forecasting crop yields in heterogeneous, smallholder environments, and to enhance collaboration and exchange of knowledge among data assimilation and crop forecasting groups. The workshop showed that advances made in crop science are widely applicable to crop forecasting. The presentations of the participants approached the challenge from many sides, leading to ideas for improvement that can be implemented in real-time, operational crop yield forecasting. When applied, this knowledge has the potential to benefit the livelihoods of smallholder farmers in the developing world.JRC.H.4-Monitoring Agricultural Resource

    Assimilation de données satellitaires pour le suivi des ressources en eau dans la zone Euro-Méditerranée

    Get PDF
    Une estimation plus précise de l'état des variables des surfaces terrestres est requise afin d'améliorer notre capacité à comprendre, suivre et prévoir le cycle hydrologique terrestre dans diverses régions du monde. En particulier, les zones méditerranéennes sont souvent caractérisées par un déficit en eau du sol affectant la croissance de la végétation. Les dernières simulations du GIEC (Groupe d'Experts Intergouvernemental sur l'Evolution du Climat) indiquent qu'une augmentation de la fréquence des sécheresses et des vagues de chaleur dans la région Euro-Méditerranée est probable. Il est donc crucial d'améliorer les outils et l'utilisation des observations permettant de caractériser la dynamique des processus des surfaces terrestres de cette région. Les modèles des surfaces terrestres ou LSMs (Land Surface Models) ont été développés dans le but de représenter ces processus à diverses échelles spatiales. Ils sont habituellement forçés par des données horaires de variables atmosphériques en point de grille, telles que la température et l'humidité de l'air, le rayonnement solaire et les précipitations. Alors que les LSMs sont des outils efficaces pour suivre de façon continue les conditions de surface, ils présentent encore des défauts provoqués par les erreurs dans les données de forçages, dans les valeurs des paramètres du modèle, par l'absence de représentation de certains processus, et par la mauvaise représentation des processus dans certaines régions et certaines saisons. Il est aussi possible de suivre les conditions de surface depuis l'espace et la modélisation des variables des surfaces terrestres peut être améliorée grâce à l'intégration dynamique de ces observations dans les LSMs. La télédétection spatiale micro-ondes à basse fréquence est particulièrement utile dans le contexte du suivi de ces variables à l'échelle globale ou continentale. Elle a l'avantage de pouvoir fournir des observations par tout-temps, de jour comme de nuit. Plusieurs produits utiles pour le suivi de la végétation et du cycle hydrologique sont déjà disponibles. Ils sont issus de radars en bande C tels que ASCAT (Advanced Scatterometer) ou Sentinel-1. L'assimilation de ces données dans un LSM permet leur intégration de façon cohérente avec la représentation des processus. Les résultats obtenus à partir de l'intégration de données satellitaires fournissent une estimation de l'état des variables des surfaces terrestres qui sont généralement de meilleure qualité que les simulations sans assimilation de données et que les données satellitaires elles-mêmes. L'objectif principal de ce travail de thèse a été d'améliorer la représentation des variables des surfaces terrestres reliées aux cycles de l'eau et du carbone dans le modèle ISBA grâce à l'assimilation d'observations de rétrodiffusion radar (sigma°) provenant de l'instrument ASCAT. Un opérateur d'observation capable de représenter les sigma° ASCAT à partir de variables simulées par le modèle ISBA a été développé. Une version du WCM (water cloud model) a été mise en œuvre avec succès sur la zone Euro-Méditerranée. Les valeurs simulées ont été comparées avec les observations satellitaires. Une quantification plus détaillée de l'impact de divers facteurs sur le signal a été faite sur le sud-ouest de la France. L'étude de l'impact de la tempête Klaus sur la forêt des Landes a montré que le WCM est capable de représenter un changement brutal de biomasse de la végétation. Le WCM est peu efficace sur les zones karstiques et sur les surfaces agricoles produisant du blé. Dans ce dernier cas, le problème semble provenir d'un décalage temporel entre l'épaisseur optique micro-ondes de la végétation et l'indice de surface foliaire de la végétation. Enfin, l'assimilation directe des sigma° ASCAT a été évaluée sur le sud-ouest de la France.More accurate estimates of land surface conditions are important for enhancing our ability to understand, monitor, and predict key variables of the terrestrial water cycle in various parts of the globe. In particular, the Mediterranean area is frequently characterized by a marked impact of the soil water deficit on vegetation growth. The latest IPCC (Intergovernmental Panel on Climate Change) simulations indicate that occurrence of droughts and warm spells in the Euro-Mediterranean region are likely to increase. It is therefore crucial to improve the ways of understanding, observing and simulating the dynamics of the land surface processes in the Euro-Mediterranean region. Land surface models (LSMs) have been developed for the purpose of representing the land surface processes at various spatial scales. They are usually forced by hourly gridded atmospheric variables such as air temperature, air humidity, solar radiation, precipitation, and are used to simulate land surface states and fluxes. While LSMs can provide a continuous monitoring of land surface conditions, they still show discrepancies due to forcing and parameter errors, missing processes and inadequate model physics for particular areas or seasons. It is also possible to observe the land surface conditions from space. The modelling of land surface variables can be improved through the dynamical integration of these observations into LSMs. Remote sensing observations are particularly useful in this context because they are able to address global and continental scales. Low frequency microwave remote sensing has advantages because it can provide regular observations in all-weather conditions and at either daytime or night-time. A number of satellite-derived products relevant to the hydrological and vegetation cycles are already available from C-band radars such as the Advanced Scatterometer (ASCAT) or Sentinel-1. Assimilating these data into LSMs permits their integration in the process representation in a consistent way. The results obtained from assimilating satellites products provide land surface variables estimates that are generally superior to the model estimates or satellite observations alone. The main objective of this thesis was to improve the representation of land surface variables linked to the terrestrial water and carbon cycles in the ISBA LSM through the assimilation of ASCAT backscatter (sigma°) observations. An observation operator capable of representing the ASCAT sigma° from the ISBA simulated variables was developed. A version of the water cloud model (WCM) was successfully implemented over the Euro-Mediterranean area. The simulated values were compared with those observed from space. A more detailed quantification of the influence of various factors on the signal was made over southwestern France. Focusing on the Klaus storm event in the Landes forest, it was shown that the WCM was able to represent abrupt changes in vegetation biomass. It was also found that the WCM had shortcomings over karstic areas and over wheat croplands. It was shown that the latter was related to a discrepancy between the seasonal cycle of microwave vegetation optical depth (VOD) and leaf area index (LAI). Finally, the direct assimilation of ASCAT sigma° observations was assessed over southwestern France

    Assessing Crop Water Requirement and Yield by Combining ERA5-Land Reanalysis Data with CM-SAF Satellite-Based Radiation Data and Sentinel-2 Satellite Imagery

    Get PDF
    The widespread development of Earth Observation (EO) systems and advances in numerical atmospheric modeling have made it possible to use the newest data sources as input for crop–water balance models, thereby improving the crop water requirements (CWR) and yield estimates from the field to the regional scale. Satellite imagery and numerical weather prediction outputs offer high resolution (in time and space) gridded data that can compensate for the paucity of crop parameter field measurements and ground weather observations, as required for assessments of CWR and yield. In this study, the AquaCrop model was used to assess CWR and yield of tomato on a farm in Southern Italy by assimilating Sentinel-2 (S2) canopy cover imagery and using CM-SAF satellite-based radiation data and ERA5-Land reanalysis as forcing weather data. The prediction accuracy was evaluated with field data collected during the irrigation season (April–July) of 2021. Satellite estimates of canopy cover differed from ground observations, with a RMSE of about 11%. CWR and yield predictions were compared with actual data regarding irrigation volumes and harvested yield. The results showed that S2 estimates of crop parameters represent added value, since their assimilation into crop growth models improved CWR and yield estimates. Reliable CWR and yield estimates can be achieved by combining the ERA5-Land and CM-SAF weather databases with S2 imagery for assimilation into the AquaCrop model

    CubeSat constellations provide enhanced crop phenology and digital agricultural insights using daily leaf area index retrievals

    Get PDF
    Satellite remote sensing has great potential to deliver on the promise of a data-driven agricultural revolution, with emerging space-based platforms providing spatiotemporal insights into precisionlevel attributes such as crop water use, vegetation health and condition and crop response to management practices. Using a harmonized collection of high-resolution Planet CubeSat, Sentinel-2, Landsat-8 and additional coarser resolution imagery from MODIS and VIIRS, we exploit a multisatellite data fusion and machine learning approach to deliver a radiometrically calibrated and gap-filled time-series of daily leaf area index (LAI) at an unprecedented spatial resolution of 3 m. The insights available from such high-resolution CubeSat-based LAI data are demonstrated through tracking the growth cycle of a maize crop and identifying observable within-field spatial and temporal variations across key phenological stages. Daily LAI retrievals peaked at the tasseling stage, demonstrating their value for fertilizer and irrigation scheduling. An evaluation of satellite-based retrievals against field-measured LAI data collected from both rain-fed and irrigated fields shows high correlation and captures the spatiotemporal development of intra- and inter-field variations. Novel agricultural insights related to individual vegetative and reproductive growth stages were obtained, showcasing the capacity for new high-resolution CubeSat platforms to deliver actionable intelligence for precision agricultural and related applications
    • …
    corecore