114 research outputs found

    Developing object detection, tracking and image mosaicing algorithms for visual surveillance

    Get PDF
    Visual surveillance systems are becoming increasingly important in the last decades due to proliferation of cameras. These systems have been widely used in scientific, commercial and end-user applications where they can store, extract and infer huge amount of information automatically without human help. In this thesis, we focus on developing object detection, tracking and image mosaicing algorithms for a visual surveillance system. First, we review some real-time object detection algorithms that exploit motion cue and enhance one of them that is suitable for use in dynamic scenes. This algorithm adopts a nonparametric probabilistic model over the whole image and exploits pixel adjacencies to detect foreground regions under even small baseline motion. Then we develop a multiple object tracking algorithm which utilizes this algorithm as its detection step. The algorithm analyzes multiple object interactions in a probabilistic framework using virtual shells to track objects in case of severe occlusions. The final part of the thesis is devoted to an image mosaicing algorithm that stitches ordered images to create a large and visually attractive mosaic for large sequence of images. The proposed mosaicing method eliminates nonlinear optimization techniques with the capability of real-time operation on large datasets. Experimental results show that developed algorithms work quite successfully in dynamic and cluttered environments with real-time performance

    Video alignment to a common reference

    Get PDF
    2015 Spring.Includes bibliographical references.Handheld videos often include unintentional motion (jitter) and intentional motion (pan and/or zoom). Human viewers prefer to see jitter removed, creating a smoothly moving camera. For video analysis, in contrast, aligning to a fixed stable background is sometimes preferable. This paper presents an algorithm that removes both forms of motion using a novel and efficient way of tracking background points while ignoring moving foreground points. The approach is related to image mosaicing, but the result is a video rather than an enlarged still image. It is also related to multiple object tracking approaches, but simpler since moving objects need not be explicitly tracked. The algorithm presented takes as input a video and returns one or several stabilized videos. Videos are broken into parts when the algorithm detects background change and it becomes necessary to fix upon a new background. We present two techniques in this thesis. One technique stabilizes the video with respect to the first available frame. Another technique stabilizes the videos with respect to a best frame. Our approach assumes the person holding the camera is standing in one place and that objects in motion do not dominate the image. Our algorithm performs better than previously published approaches when compared on 1,401 handheld videos from the recently released Point-and-Shoot Face Recognition Challenge (PASC)

    Computational Optical Sectioning in Fibre Bundle Endomicroscopy

    Get PDF
    The field of fibre bundle endomicroscopy has emerged to enable real-time imaging of cellular level features in-vivo. The gold standard is confocal laserscanning, enabling optical sectioning. Point-scan confocal suffers from lower speeds, a need for complex alignment, and the added cost of a laser. This thesis presents three developments in computational optical sectioning for fibre bundle endomicroscopy.The first development is in structured illumination (SIM) endomicroscopy. Lower-cost, simplified endomicroscopes have been developed which use widefield incoherent illumination. Optical sectioning can be introduced to these systems using SIM. SIM improves imaging using spatial modulation of the focal plane and capturing a three-frame sequence. The acquired images are then numerically processed to reject out-of-focus light. This thesis reports and characterises the first high-speed SIM endomicroscope built using a miniature array ofmirrors, a digital micromirror device. The second development is automated motion compensation in SIM endomicroscopy. As a multi frame process, SIM is susceptible to motion artefacts, making the technique difficult to use in vivo and preventing the use of mosaicking to synthesise a larger effective field of view. I report and validate an automatic motion compensation technique to overcome motion artefacts and report the firstmosaics in SIM endomicroscopy.The third development is improvements in subtraction-based enhanced line scanning (ELS) endomicroscopy. The 2D scanning of a point scan confocal endomicroscope can be replaced by a scanning line which is synchronised to the sequential readout of a rolling shutter camera. While this leads to high-speed sectioning, as with all line scanning systems, far-from-focus light degrades images. It is possible to remove this by subtracting a second image taken with an offset detection slit. This has previously required two-cameras or two sequentialframes. The latter introduces motion artefacts. This thesis presents a novel approach to ELS using single frame acquisition with real-time mosaicking at 240frames/s

    Moving object reconstruction on background mosaics of dynamic video sequences

    Get PDF
    Master'sMASTER OF SCIENC

    Blending techniques for underwater photomosaics

    Get PDF
    The creation of consistent underwater photomosaics is typically hampered by local misalignments and inhomogeneous illumination of the image frames, which introduce visible seams that complicate post processing of the mosaics for object recognition and shape extraction. In this thesis, methods are proposed to improve blending techniques for underwater photomosaics and the results are compared with traditional methods. Five specific techniques drawn from various areas of image processing, computer vision, and computer graphics have been tested: illumination correction based on the median mosaic, thin plate spline warping, perspective warping, graph-cut applied in the gradient domain and in the wavelet domain. A combination of the first two methods yields globally homogeneous underwater photomosaics with preserved continuous features. Further improvements are obtained with the graph-cut technique applied in the spatial domain

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    Background Subtraction in Video Surveillance

    Get PDF
    The aim of thesis is the real-time detection of moving and unconstrained surveillance environments monitored with static cameras. This is achieved based on the results provided by background subtraction. For this task, Gaussian Mixture Models (GMMs) and Kernel density estimation (KDE) are used. A thorough review of state-of-the-art formulations for the use of GMMs and KDE in the task of background subtraction reveals some further development opportunities, which are tackled in a novel GMM-based approach incorporating a variance controlling scheme. The proposed approach method is for parametric and non-parametric and gives us the better method for background subtraction, with more accuracy and easier parametrization of the models, for different environments. It also converges to more accurate models of the scenes. The detection of moving objects is achieved by using the results of background subtraction. For the detection of new static objects, two background models, learning at different rates, are used. This allows for a multi-class pixel classification, which follows the temporality of the changes detected by means of background subtraction. In a first approach, the subtraction of background models is done for parametric model and their results are shown. The second approach is for non-parametric models, where background subtraction is done using KDE non-parametric model. Furthermore, we have done some video engineering, where the background subtraction algorithm was employed so that, the background from one video and the foreground from another video are merged to form a new video. By doing this way, we can also do more complex video engineering with multiple videos. Finally, the results provided by region analysis can be used to improve the quality of the background models, therefore, considerably improving the detection results

    Wide Field Aperture Synthesis Radio Astronomy

    Get PDF
    This thesis is focussed on the Molonglo Observatory Synthesis Telescope (MOST), reporting on two primary areas of investigation. Firstly, it describes the recent upgrade of the MOST to perform an imaging survey of the southern sky. Secondly, it presents a MOST survey of the Vela supernova remnant and follow-up multiwavelength studies. The MOST Wide Field upgrade is the most significant instrumental upgrade of the telescope since observations began in 1981. It has made possible the nightly observation of fields with area ~5 square degrees, while retaining the operating frequency of 843 MHz and the pre-existing sensitivity to point sources and extended structure. The MOST will now be used to make a sensitive (rms approximately 1 mJy/beam) imaging survey of the sky south of declination -30°. This survey consists of two components: an extragalactic survey, which will begin in the south polar region, and a Galactic survey of latitudes |b| < 10°. These are expected to take about ten years. The upgrade has necessitated the installation of 352 new preamplifiers and phasing circuits which are controlled by 88 distributed microcontrollers, networked using optic fibre. The thesis documents the upgrade and describes the new systems, including associated testing, installation and commissioning. The thesis continues by presenting a new high-resolution radio continuum survey of the Vela supernova remnant (SNR), made with the MOST before the completion of the Wide Field upgrade. This remnant is the closest and one of the brightest SNRs. The contrast between the structures in the central pulsar-powered nebula and the synchrotron radiation shell allows the remnant to be identified morphologically as a member of the composite class. The data are the first of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula, and make possible a comparison of radio, optical and soft X-ray emission from the resolved shell filaments. The survey covers an area of 50 square degrees at a resolution of 43" x 60", while imaging structures on scales up to 30'. It has been used for comparison with Wide Field observations to evaluate the performance of the upgraded MOST. The central plerion of the Vela SNR (Vela X) contains a network of complex filamentary structures. The validity of the imaging of these filaments has been confirmed with Very Large Array (VLA) observations at 1.4 GHz. Unlike the situation in the Crab Nebula, the filaments are not well correlated with H-alpha emission. Within a few parsec of the Vela pulsar the emission is much more complex than previously seen: both very sharp edges and more diffuse emission are present. It has been postulated that one of the brightest filaments in Vela X is associated with the X-ray feature (called a `jet') which appears to be emanating from the region of the pulsar. However, an analysis of the MOST and VLA data shows that this radio filament has a flat spectral index similar to another more distant filament within the plerion, indicating that it is probably unrelated to the X-ray feature
    corecore