105 research outputs found

    Disturbance attenuation with multi-sensing servo systems for high density storage devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    LaserCube optical communication terminal for nano and micro satellites

    Get PDF
    This paper presents the design and testing of LaserCube, a miniature optical communication terminal conceived for nano and microsatellites. The system architecture has been designed for both the downlink and intersatellite link version of the system. Then, a complete engineering model of LaserCube in its intersatellite link configuration has been developed and tested. It features (1) a dual stage pointing and tracking system based on a coarse pointing mechanism patented by Stellar Project, (2) an optical head with a full-duplex telecom channel with transmission and reception on the same wavelength for two-way links, (3) a transceiver section with telecom laser source and optical receiver and (4) the terminal control unit with onboard computer, actuator drivers and data interface. Experimental validation of the system is achieved through a laboratory simulation of an intersatellite link scenario with realistic dynamic disturbance coming from the host satellite attitude jitter

    Integration of Active Systems for a Global Chassis Control Design

    Get PDF
    Vehicle chassis control active systems (braking, suspension, steering and driveline), from the first ABS/ESC control unit to the current advanced driver assistance systems (ADAS), are progressively revolutionizing the way of thinking and designing the vehicle, improving its interaction with the surrounding world (V2V and V2X) and have led to excellent results in terms of safety and performances (dynamic behavior and drivability). They are usually referred as intelligent vehicles due to a software/hardware architecture able to assist the driver for achieving specific safety margin and/or optimal vehicle dynamic behavior. Moreover, industrial and academic communities agree that these technologies will progress till the diffusion of the so called autonomous cars which are able to drive robustly in a wide range of traffic scenarios. Different autonomous vehicles are already available in Europe, Japan and United States and several solutions have been proposed for smart cities and/or small public area like university campus. In this context, the present research activity aims at improving safety, comfort and performances through the integration of global active chassis control: the purposes are to study, design and implement control strategies to support the driver for achieving one or more final target among safety, comfort and performance. Specifically, the vehicle subsystems that are involved in the present research for active systems development are the steering system, the propulsion system, the transmission and the braking system. The thesis is divided into three sections related to different applications of active systems that, starting from a robust theoretical design procedure, are strongly supported by objective experimental results obtained fromHardware In the Loop (HIL) test rigs and/or proving ground testing sessions. The first chapter is dedicated to one of the most discussed topic about autonomous driving due to its impact from the social point of view and in terms of human error mitigation when the driver is not prompt enough. In particular, it is here analyzed the automated steering control which is already implemented for automatic parking and that could represent also a key element for conventional passenger car in emergency situation where a braking intervention is not enough for avoiding an imminent collision. The activity is focused on different steering controllers design and their implementation for an autonomous vehicle; an obstacle collision avoidance adaptation is introduced for future implementations. Three different controllers, Proportional Derivative (PD), PD+Feedforward (FF) e PD+Integral Sliding Mode (ISM), are designed for tracking a reference trajectory that can be modified in real-time for obstacle avoidance purposes. Furthermore, PD+FF and PD+ISM logic are able to improve the tracking performances of automated steering during cornering maneuvers, relevant fromthe collision avoidance point of view. Path tracking control and its obstacle avoidance enhancement is also shown during experimental tests executed in a proving ground through its implementation for an autonomous vehicle demonstrator. Even if the activity is presented for an autonomous vehicle, the active control can be developed also for a conventional vehicle equipped with an Electronic Power Steering (EPS) or Steer-by-wire architectures. The second chapter describes a Torque Vectoring (TV) control strategy, applied to a Fully Electric Vehicle (FEV) with four independent electric motor (one for each wheel), that aims to optimize the lateral vehicle behavior by a proper electric motor torque regulation. A yaw rate controller is presented and designed in order to achieve a desired steady-state lateral behaviour of the car (handling task). Furthermore, a sideslip angle controller is also integrated to preserve vehicle stability during emergency situations (safety task). LQR, LQR+FF and ISM strategies are formulated and explained for yaw rate and concurrent yaw rate/sideslip angle control techniques also comparing their advantages and weakness points. The TV strategy is implemented and calibrated on a FEV demonstrator by executing experimental maneuvers (step steer, skid pad, lane change and sequence of step steers) thus proving the efficacy of the proposed controller and the safety contribution guaranteed by the sideslip control. The TV could be also applied for internal combustion engine driven vehicles by installing specific torque vectoring differentials, able to distribute the torque generated by the engine to each wheel independently. The TV strategy evaluated in the second chapter can be influenced by the presence of a transmission between themotor (or the engine) and wheels (where the torque control is supposed to be designed): in addition to the mechanical delay introduced by transmission components, the presence of gears backlashes can provoke undesired noises and vibrations in presence of torque sign inversion. The last chapter is thus related to a new method for noises and vibration attenuation for a Dual Clutch Transmission (DCT). This is achieved in a new way by integrating the powertrain control with the braking system control, which are historically and conventionally analyzed and designed separately. It is showed that a torsional preload effect can be obtained on transmission components by increasing the wheel torque and concurrently applying a braking wheel torque. For this reason, a pressure following controller is presented and validated through a Hardware In the Loop (HIL) test rig in order to track a reference value of braking torque thus ensuring the desired preload effect and noises reduction. Experimental results demonstrates the efficacy of the controller, also opening new scenario for global chassis control design. Finally, some general conclusions are drawn and possible future activities and recommendations are proposed for further investigations or improvements with respect to the results shown in the present work

    Long Stroke FTS

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 375-384).In this thesis, I detail the design and control of a linear long stroke fast tool servo (FTS) with integral balance mass. The long stroke fast tool servo consists of an air bearing stage driven by a unique three phase oil cooled linear motor. The linear FTS has a travel range of 25 mm and is capable of 100 m/s² accelerations. The FTS is mounted to a T-base diamond turning machine (DTM). The FTS is attached to a hydrostatic bearing supported in-feed stage which is driven by a second linear motor. The in-feed stage is allowed to move in response to the FTS actuation forces and thus acts as an integral balance mass. We have developed a unique control structure to control the position of both the FTS and the reaction mass. The FTS controller employs a conventional lead-lag inner loop, an adaptive feedforward cancelation (AFC) outer loop, and command pre-shifting. For the FTS controller, the AFC resonators are placed in the forward path which creates infinite gain at the resonator frequency. The controller for the hydrostatic stage consists of a conventional lead-lag control inner-loop and a base acceleration feedback controller. The acceleration feedback controller consists of a high-pass filter, a double integrator for phase compensation, and an array of AFC resonators. For the base acceleration controller, the AFC resonators are placed in the feedback path and thus act as narrow-frequency notch filters. The notch filters allow the hydrostatic stage/balance mass to move freely at the commanded trajectory harmonics thus attenuating the forces introduced into the DTM. The AFC control loops are designed using a new loop shaping perspective for AFC control. In this thesis, we present two extensions to AFC control.(cont.) The first extension called Oscillator Amplitude Control (OAC) is used to approximate the convergence characteristics of an AFC controller. The second extension termed Amplitude Modulated Adaptive Feedforward Cancelation (AMAFC) is designed to exactly cancel disturbances with a time varying amplitude.by Marten F. Byl.Ph.D

    Design and application of advanced disturbance rejection control for small fixed-wing UAVs

    Get PDF
    Small Unmanned Aerial Vehicles (UAVs) have seen continual growth in both research and commercial applications. Attractive features such as their small size, light weight and low cost are a strong driver of this growth. However, these factors also bring about some drawbacks. The light weight and small size means that small UAVs are far more susceptible to performance degradation from factors such as wind gusts. Due to the generally low cost, available sensors are somewhat limited in both quality and available measurements. For example, it is very unlikely that angle of attack is sensed by a small UAV. These aircraft are usually constructed by the end user, so a tangible amount of variation will exist between different aircraft of the same type. Depending on application, additional variation between flights from factors such as battery placement or additional sensors may exist. This makes the application of optimal model based control methods difficult. Research literature on the topic of small UAV control is very rich in regard to high level control, such as path planning in wind. A common assumption in such literature is the existence of a low level control method which is able to track demanded aircraft attitudes to complete a task. Design of such controllers in the presence of significant wind or modelling errors (factors collectively addressed as lumped disturbances herein) is rarely considered. Disturbance Observer Based Control (DOBC) is a means of improving the robustness of a baseline feedback control scheme in the presence of lumped disturbances. The method allows for the rejection of the influence of unmeasurable disturbances much more quickly than traditional integral control, while also enabling recovery of nominal feedback con- trol performance. The separation principle of DOBC allows for the design of a nominal feedback controller, which does not need to be robust against disturbances. A DOBC augmentation can then be applied to ensure this nominal performance is maintained even in the presence of disturbances. This method offers highly attractive properties for control design, and has seen a large rise in popularity in recent years. Current literature on this subject is very often conducted purely in simulation. Ad- ditionally, very advanced versions of DOBC control are now being researched. To make the method attractive to small UAV operators, it would be beneficial if a simple DOBC design could be used to realise the benefits of this method, as it would be more accessible and applicable by many. This thesis investigates the application of a linear state space disturbance observer to low level flight control of a small UAV, along with developments of the method needed to achieve good performance in flight testing. Had this work been conducted purely in simulation, it is likely many of the difficulties encountered would not have been addressed or discovered. This thesis presents four main contributions. An anti-windup method has been devel- oped which is able to alleviate the effect of control saturation on the disturbance observer dynamics. An observer is designed which explicitly considers actuator dynamics. This development was shown to enable faster observer estimation dynamics, yielding better disturbance rejection performance. During initial flight testing, a significant aeroelastic oscillation mode was discovered. This issue was studied in detail theoretically, with a pro- posed solution developed and applied. The solution was able to fully alleviate the effect in flight. Finally, design and development of an over-actuated DOBC method is presented. A method for design of DOBC for over actuated systems was developed and studied. The majority of results in this thesis are demonstrated with flight test data

    Contributions to impedance shaping control techniques for power electronic converters

    Get PDF
    El conformado de la impedancia o admitancia mediante control para convertidores electrónicos de potencia permite alcanzar entre otros objetivos: mejora de la robustez de los controles diseñados, amortiguación de la dinámica de la tensión en caso de cambios de carga, y optimización del filtro de red y del controlador en un solo paso (co-diseño). La conformación de la impedancia debe ir siempre acompañada de un buen seguimiento de referencias. Por tanto, la idea principal es diseñar controladores con una estructura sencilla que equilibren la consecución de los objetivos marcados en cada caso. Este diseño se realiza mediante técnicas modernas, cuya resolución (síntesis del controlador) requiere de herramientas de optimización. La principal ventaja de estas técnicas sobre las clásicas, es decir, las basadas en soluciones algebraicas, es su capacidad para tratar problemas de control complejos (plantas de alto orden y/o varios objetivos) de una forma considerablemente sistemática. El primer problema de control por conformación de la impedancia consiste en reducir el sobreimpulso de tensión ante cambios de carga y minimizar el tamaño de los componentes del filtro pasivo en los convertidores DC-DC. Posteriormente, se diseñan controladores de corriente y tensión para un inversor DC-AC trifásico que logren una estabilidad robusta del sistema para una amplia variedad de filtros. La condición de estabilidad robusta menos conservadora, siendo la impedancia de la red la principal fuente de incertidumbre, es el índice de pasividad. En el caso de los controladores de corriente, el impacto de los lazos superiores en la estabilidad basada en la impedancia también se analiza mediante un índice adicional: máximo valor singular. Cada uno de los índices se aplica a un rango de frecuencias determinado. Finalmente, estas condiciones se incluyen en el diseño en un solo paso del controlador de un convertidor back-to-back utilizado para operar generadores de inducción doblemente alimentados (aerogeneradores tipo 3) presentes en algunos parques eólicos. Esta solución evita los problemas de oscilación subsíncrona, derivados de las líneas de transmisión con condensadores de compensación en serie, a los que se enfrentan estos parques eólicos. Los resultados de simulación y experimentales demuestran la eficacia y versatilidad de la propuesta.Impedance or admittance shaping by control for power electronic converters allows to achieve among other objectives: robustness enhancement of the designed controls, damped voltage dynamics in case of load changes, and grid filter and controller optimization in a single step (co-design). Impedance shaping must always be accompanied by a correct reference tracking performance. Therefore, the main idea is to design controllers with a simple structure that balance the achievement of the objectives set in each case. This design is carried out using modern techniques, whose resolution (controller synthesis) requires optimization tools. The main advantage of these techniques over the classical ones, i.e. those based on algebraic solutions, is their ability to deal with complex control problems (high order plants and/or several objectives) in a considerably systematic way. The first impedance shaping control problem is to reduce voltage overshoot under load changes and minimize the size of passive filter components in DC-DC converters. Subsequently, current and voltage controllers for a three-phase DC-AC inverter are designed to achieve robust system stability for a wide variety of filters. The least conservative robust stability condition, with grid impedance being the main source of uncertainty, is the passivity index. In the case of current controllers, the impact of higher loops on impedance-based stability is also analyzed by an additional index: maximum singular value. Each of the indices is applied to a given frequency range. Finally, these conditions are included in the one-step design of the controller of a back-to-back converter used to operate doubly fed induction generators (type-3 wind turbines) present in some wind farms. This solution avoids the sub-synchronous oscillation problems, derived from transmission lines with series compensation capacitors, faced by these wind farms. Simulation and experimental results demonstrate the effectiveness and versatility of the proposa

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&
    corecore