24,393 research outputs found

    Template-Cut: A Pattern-Based Segmentation Paradigm

    Get PDF
    We present a scale-invariant, template-based segmentation paradigm that sets up a graph and performs a graph cut to separate an object from the background. Typically graph-based schemes distribute the nodes of the graph uniformly and equidistantly on the image, and use a regularizer to bias the cut towards a particular shape. The strategy of uniform and equidistant nodes does not allow the cut to prefer more complex structures, especially when areas of the object are indistinguishable from the background. We propose a solution by introducing the concept of a "template shape" of the target object in which the nodes are sampled non-uniformly and non-equidistantly on the image. We evaluate it on 2D-images where the object's textures and backgrounds are similar, and large areas of the object have the same gray level appearance as the background. We also evaluate it in 3D on 60 brain tumor datasets for neurosurgical planning purposes.Comment: 8 pages, 6 figures, 3 tables, 6 equations, 51 reference

    Towards multiple 3D bone surface identification and reconstruction using few 2D X-ray images for intraoperative applications

    Get PDF
    This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray images are automatically identified. Sparse 3D landmark points of each bone are automatically reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a surface is approximately optimal covering main characteristics of the surface. A statistical shape model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces can then be visualised and manipulated by surgeons or used by surgical robotic systems

    Volumetric analysis of arteriovenous malformation using computed tomographic angiography

    Full text link
    Thesis (M.A.)--Boston UniversityAn arteriovenous malformation (AVM) is an abnormal collection of blood vessels in which arterial blood flows directly into the draining vein without the normal interposed capillaries. It is an important and growing public healthcare problem affecting millions of Americans and many more people internationally. There are several potential treatment options for the AVM, and the best treatment depends on the maximum length of nidus based on the Spetzler- Martin grading system. However, this grading system is insensitive to volume, because it was designed on the basis of two dimensional digital subtraction angiography images. Here, we report a method using computed tomographic angiography to measure the volume of AVM nidus, as a means for noninvasively assessment. The initial results show statistically significant differences between healthy and AVM subject groups in the direct comparisons of the volume (cm3) through the method we suggested (2.456 ± 1.482, 12.478 ± 5.743 and 53.963 ± 9.338 (mean ± stdev.); Normal (No AVM), Small (< 3cm), Medium (3 ~ 6 cm) respectively; P < 0.005 for all), and they also show the exponential correlation between the AVM volume and the maximum length of a nidus (trend-line: y = 4.4183e0.536x with R2 = 0.945). These results provide more accurate volumetric information. Therefore, this noninvasive imaging-based method is a promising means to measure the volume of AVM using clinically available imaging tools

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons
    corecore