71 research outputs found

    Intelligent Computational Transportation

    Get PDF
    Transportation is commonplace around our world. Numerous researchers dedicate great efforts to vast transportation research topics. The purpose of this dissertation is to investigate and address a couple of transportation problems with respect to geographic discretization, pavement surface automatic examination, and traffic ow simulation, using advanced computational technologies. Many applications require a discretized 2D geographic map such that local information can be accessed efficiently. For example, map matching, which aligns a sequence of observed positions to a real-world road network, needs to find all the nearby road segments to the individual positions. To this end, the map is discretized by cells and each cell retains a list of road segments coincident with this cell. An efficient method is proposed to form such lists for the cells without costly overlapping tests. Furthermore, the method can be easily extended to 3D scenarios for fast triangle mesh voxelization. Pavement surface distress conditions are critical inputs for quantifying roadway infrastructure serviceability. Existing computer-aided automatic examination techniques are mainly based on 2D image analysis or 3D georeferenced data set. The disadvantage of information losses or extremely high costs impedes their effectiveness iv and applicability. In this study, a cost-effective Kinect-based approach is proposed for 3D pavement surface reconstruction and cracking recognition. Various cracking measurements such as alligator cracking, traverse cracking, longitudinal cracking, etc., are identified and recognized for their severity examinations based on associated geometrical features. Smart transportation is one of the core components in modern urbanization processes. Under this context, the Connected Autonomous Vehicle (CAV) system presents a promising solution towards the enhanced traffic safety and mobility through state-of-the-art wireless communications and autonomous driving techniques. Due to the different nature between the CAVs and the conventional Human- Driven-Vehicles (HDVs), it is believed that CAV-enabled transportation systems will revolutionize the existing understanding of network-wide traffic operations and re-establish traffic ow theory. This study presents a new continuum dynamics model for the future CAV-enabled traffic system, realized by encapsulating mutually-coupled vehicle interactions using virtual internal and external forces. A Smoothed Particle Hydrodynamics (SPH)-based numerical simulation and an interactive traffic visualization framework are also developed

    NormalNet: Learning based Guided Normal Filtering for Mesh Denoising

    Get PDF
    Mesh denoising is a critical technology in geometry processing, which aims to recover high-fidelity 3D mesh models of objects from noise-corrupted versions. In this work, we propose a deep learning based face normal filtering scheme for mesh denoising, called \textit{NormalNet}. Different from natural images, for mesh, it is difficult to collect enough examples to build a robust end-to-end training scheme for deep networks. To remedy this problem, we propose an iterative framework to generate enough face-normal pairs, based on which a convolutional neural networks (CNNs) based scheme is designed for guidance normal learning. Moreover, to facilitate the 3D convolution operation in CNNs, for each face in mesh, we propose a voxelization strategy to transform irregular local mesh structure into regular 4D-array form. Finally, guided normal filtering is performed to obtain filtered face normals, according to which denoised positions of vertices are derived. Compared to the state-of-the-art works, the proposed scheme can generate accurate guidance normals and remove noise effectively while preserving original features and avoiding pseudo-features

    Validating Stereoscopic Volume Rendering

    Get PDF
    The evaluation of stereoscopic displays for surface-based renderings is well established in terms of accurate depth perception and tasks that require an understanding of the spatial layout of the scene. In comparison direct volume rendering (DVR) that typically produces images with a high number of low opacity, overlapping features is only beginning to be critically studied on stereoscopic displays. The properties of the specific images and the choice of parameters for DVR algorithms make assessing the effectiveness of stereoscopic displays for DVR particularly challenging and as a result existing literature is sparse with inconclusive results. In this thesis stereoscopic volume rendering is analysed for tasks that require depth perception including: stereo-acuity tasks, spatial search tasks and observer preference ratings. The evaluations focus on aspects of the DVR rendering pipeline and assess how the parameters of volume resolution, reconstruction filter and transfer function may alter task performance and the perceived quality of the produced images. The results of the evaluations suggest that the transfer function and choice of recon- struction filter can have an effect on the performance on tasks with stereoscopic displays when all other parameters are kept consistent. Further, these were found to affect the sensitivity and bias response of the participants. The studies also show that properties of the reconstruction filters such as post-aliasing and smoothing do not correlate well with either task performance or quality ratings. Included in the contributions are guidelines and recommendations on the choice of pa- rameters for increased task performance and quality scores as well as image based methods of analysing stereoscopic DVR images

    Efficient voxelization using projected optimal scanline

    Get PDF
    In the paper, we propose an efficient algorithm for the surface voxelization of 3D geometrically complex models. Unlike recent techniques relying on triangle-voxel intersection tests, our algorithm exploits the conventional parallel-scanline strategy. Observing that there does not exist an optimal scanline interval in general 3D cases if one wants to use parallel voxelized scanlines to cover the interior of a triangle, we subdivide a triangle into multiple axis-aligned slices and carry out the scanning within each polygonal slice. The theoretical optimal scanline interval can be obtained to maximize the efficiency of the algorithm without missing any voxels on the triangle. Once the collection of scanlines are determined and voxelized, we obtain the surface voxelization. We fine tune the algorithm so that it only involves a few operations of integer additions and comparisons for each voxel generated. Finally, we comprehensively compare our method with the state-of-the-art method in terms of theoretical complexity, runtime performance and the quality of the voxelization on both CPU and GPU of a regular desktop PC, as well as on a mobile device. The results show that our method outperforms the existing method, especially when the resolution of the voxelization is high

    Remuestreo estructurado de contornos de huecos en superficies 3d de objetos de forma libre utilizando bresenham

    Get PDF
    La etapa de integración dentro del proceso de reconstrucción tridimensional de objetos de forma libre, requiere de la descripción, análisis y corrección de huecos en superficies 3D. Ciertas evaluaciones cuantitativas en este tema implican contar con conjuntos de datos espaciados de forma regular o contenidos en estructuras que garanticen dicha propiedad, por ejemplo voxels, octrees o mallas estructuradas. Lograr lo anterior requiere un proceso de re-muestreo de los puntos que conforman el contorno del hueco en la superficie 3D. En este trabajo se describe un método para obtener conjuntos estructurados de puntos, a partir de los datos de contornos de huecos en objetos de forma libre. El método inicia con el ajuste de una curva NURBS al conjunto inicial de puntos con el fin de asegurar la suavidad del contorno, de lo cual se obtiene un conjunto de puntos ajustados. Finalmente se utiliza el algoritmo de discretización de Bresenham para obtener el conjunto de puntos estructurados. Los resultados obtenidos muestran que el método desarrollado asegura que el conjunto final de puntos estructurados preserven la forma del contorno original con altos niveles de detalle

    Representação de formas por distância euclidiana truncada

    Get PDF
    Orientador: Jorge StolfDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta dissertação estudamos o uso da transformada de distância euclidiana com sinal truncada para representar a forma de objetos n-dimensionais, com ênfase em três dimen- sões, e para aplicações de projeto e manufatura assistidas por computador (CAD/CAM). A representação consiste de uma imagem digital onde cada pixel contém a distância de seu centro à fronteira do objeto, quantizada e truncada. Nós elaboramos ferramentas para geração dessa representação com garantias informativas sobre o interior e o exterior do objeto a ser representado, e também estudamos algoritmos para conversão de e para outras representações de formas, como imagens binárias e ternárias, polígonos e malhas de triângulos, e modelos procedurais. Por fim, investigamos os erros empíricos da extração da representação de borda através da representação de distância truncada e o impacto de seus parâmetros nessa tarefaAbstract: In this dissertation, we study the usage of the clipped signed distance transform to rep- resent shapes of n-dimensional objects, with emphasis in three dimensions and for ap- plications in computer-aided design and manufacting (CAD/CAM). The representation consists in a digital image where every pixel holds the value of its center to the boundary of the object, truncated and quantized. We elaborate tools for generating the representation with informative properties about the interior and exterior of the object being represented and examine algorithms for conversions from and to other common shape representations, like binary and ternary images, polygons, triangle meshes, and procedural models. Fi- nally, we investigate the empirical errors of the boundary representation extraction of the clipped distance representation and the impact of its parameters for this purposeMestradoCiência da ComputaçãoMestre em Ciência da Computação131045/2018-0CAPESCNP

    Methods for the acquisition and analysis of volume electron microscopy data

    Get PDF

    Efficient algorithms for the realistic simulation of fluids

    Get PDF
    Nowadays there is great demand for realistic simulations in the computer graphics field. Physically-based animations are commonly used, and one of the more complex problems in this field is fluid simulation, more so if real-time applications are the goal. Videogames, in particular, resort to different techniques that, in order to represent fluids, just simulate the consequence and not the cause, using procedural or parametric methods and often discriminating the physical solution. This need motivates the present thesis, the interactive simulation of free-surface flows, usually liquids, which are the feature of interest in most common applications. Due to the complexity of fluid simulation, in order to achieve real-time framerates, we have resorted to use the high parallelism provided by actual consumer-level GPUs. The simulation algorithm, the Lattice Boltzmann Method, has been chosen accordingly due to its efficiency and the direct mapping to the hardware architecture because of its local operations. We have created two free-surface simulations in the GPU: one fully in 3D and another restricted only to the upper surface of a big bulk of fluid, limiting the simulation domain to 2D. We have extended the latter to track dry regions and is also coupled with obstacles in a geometry-independent fashion. As it is restricted to 2D, the simulation loses some features due to the impossibility of simulating vertical separation of the fluid. To account for this we have coupled the surface simulation to a generic particle system with breaking wave conditions; the simulations are totally independent and only the coupling binds the LBM with the chosen particle system. Furthermore, the visualization of both systems is also done in a realistic way within the interactive framerates; raycasting techniques are used to provide the expected light-related effects as refractions, reflections and caustics. Other techniques that improve the overall detail are also applied as low-level detail ripples and surface foam
    • …
    corecore