1,163 research outputs found

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Techniques for End-to-End Tcp Performance Enhancement Over Wireless Networks

    Get PDF
    Today’s wireless network complexity and the new applications from various user devices call for an in-depth understanding of the mutual performance impact of networks and applications. It includes understanding of the application traffic and network layer protocols to enable end-to-end application performance enhancements over wireless networks. Although Transport Control Protocol (TCP) behavior over wireless networks is well known, it remains as one of the main drivers which may significantly impact the user experience through application performance as well as the network resource utilization, since more than 90% of the internet traffic uses TCP in both wireless and wire-line networks. In this dissertation, we employ application traffic measurement and packet analysis over a commercial Long Term Evolution (LTE) network combined with an in-depth LTE protocol simulation to identify three critical problems that may negatively affect the application performance and wireless network resource utilization: (i) impact of the wireless MAC protocol on the TCP throughput performance, (ii) impact of applications on network resource utilization, and (iii) impact of TCP on throughput performance over wireless networks. We further propose four novel mechanisms to improve the end-to-end application and wireless system performance: (i) an enhanced LTE uplink resource allocation mechanism to reduce network delay and help prevent a TCP timeout, (ii) a new TCP snooping mechanism, which according to our experiments, can save about 20% of system resources by preventing unnecessary video packet transmission through the air interface, and (iii) two Split-TCP protocols: an Enhanced Split-TCP (ES-TCP) and an Advanced Split-TCP (AS-TCP), which significantly improve the application throughput without breaking the end-to-end TCP semantics. Experimental results show that the proposed ES-TCP and AS-TCP protocols can boost the TCP throughput by more than 60% in average, when exercised over a 4G LTE network. Furthermore, the TCP throughput performance improvement may be even superior to 200%, depending on network and usage conditions. We expect that these proposed Split-TCP protocol enhancements, together with the new uplink resource allocation enhancement and the new TCP snooping mechanism may provide even greater performance gains when more advanced radio technologies, such as 5G, are deployed. Thanks to their superior resource utilization efficiency, such advanced radio technologies will put to greater use the techniques and protocol enhancements disclosed through this dissertation

    Mitigating TCP Degradation over Intermittent Link Failures Using Intermediate Buffers

    Get PDF
    This thesis addresses the improvement of data transmission performance in a challenged network. It is well known that the popular Transmission Control Protocol degrades in environments where one or more of the links along the route is intermittently available. To avoid this degradation, this thesis proposes placing at least one node along the path of transmission to buffer and retransmit as needed to overcome the intermittent link. In the four-node, three-link testbed under particular conditions, file transmission time was reduced 20 fold in the case of an intermittent second link when the second node strategically buffers for retransmission opportunity

    Explicit congestion control algorithms for available bit rate services in asynchronous transfer mode networks

    Get PDF
    Congestion control of available bit rate (ABR) services in asynchronous transfer mode (ATM) networks has been the recent focus of the ATM Forum. The focus of this dissertation is to study the impact of queueing disciplines on ABR service congestion control, and to develop an explicit rate control algorithm. Two queueing disciplines, namely, First-In-First-Out (FIFO) and per-VC (virtual connection) queueing, are examined. Performance in terms of fairness, throughput, cell loss rate, buffer size and network utilization are benchmarked via extensive simulations. Implementation complexity analysis and trade-offs associated with each queueing implementation are addressed. Contrary to the common belief, our investigation demonstrates that per-VC queueing, which is costlier and more complex, does not necessarily provide any significant improvement over simple FIFO queueing. A new ATM switch algorithm is proposed to complement the ABR congestion control standard. The algorithm is designed to work with the rate-based congestion control framework recently recommended by the ATM Forum for ABR services. The algorithm\u27s primary merits are fast convergence, high throughput, high link utilization, and small buffer requirements. Mathematical analysis is done to show that the algorithm converges to the max-min fair allocation rates in finite time, and the convergence time is proportional to the distinct number of fair allocations and the round-trip delays in the network. At the steady state, the algorithm operates without causing any oscillations in rates. The algorithm does not require any parameter tuning, and proves to be very robust in a large ATM network. The impact of ATM switching and ATM layer congestion control on the performance of TCP/IP traffic is studied and the results are presented. The study shows that ATM layer congestion control improves the performance of TCP/IP traffic over ATM, and implementing the proposed switch algorithm drastically reduces the required switch buffer requirements. In order to validate claims, many benchmark ATM networks are simulated, and the performance of the switch is evaluated in terms of fairness, link utilization, response time, and buffer size requirements. In terms of performance and complexity, the algorithm proposed here offers many advantages over other proposed algorithms in the literature
    corecore