321 research outputs found

    ANALYSIS OF VOCAL FOLD KINEMATICS USING HIGH SPEED VIDEO

    Get PDF
    Vocal folds are the twin in-folding of the mucous membrane stretched horizontally across the larynx. They vibrate modulating the constant air flow initiated from the lungs. The pulsating pressure wave blowing through the glottis is thus the source for voiced speech production. Study of vocal fold dynamics during voicing are critical for the treatment of voice pathologies. Since the vocal folds move at 100 - 350 cycles per second, their visual inspection is currently done by strobosocopy which merges information from multiple cycles to present an apparent motion. High Speed Digital Laryngeal Imaging(HSDLI) with a temporal resolution of up to 10,000 frames per second has been established as better suited for assessing the vocal fold vibratory function through direct recording. But the widespread use of HSDLI is limited due to lack of consensus on the modalities like features to be examined. Development of the image processing techniques which circumvents the need for the tedious and time consuming effort of examining large volumes of recording has room for improvement. Fundamental questions like the required frame rate or resolution for the recordings is still not adequately answered. HSDLI cannot get the absolute physical measurement of the anatomical features and vocal fold displacement. This work addresses these challenges through improved signal processing. A vocal fold edge extraction technique with subpixel accuracy, suited even for hard to record pediatric population is developed first. The algorithm which is equally applicable for pediatric and adult subjects, is implemented to facilitate user inspection and intervention. Objective features describing the fold dynamics, which are extracted from the edge displacement waveform are proposed and analyzed on a diverse dataset of healthy males, females and children. The sampling and quantization noise present in the recordings are analyzed and methods to mitigate them are investigated. A customized Kalman smoothing and spline interpolation on the displacement waveform is found to improve the feature estimation stability. The relationship between frame rate, spatial resolution and vibration for efficient capturing of information is derived. Finally, to address the inability to measure physical measurement, a structured light projection calibrated with respect to the endoscope is prototyped

    Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network

    Get PDF
    The objective investigation of the dynamic properties of vocal fold vibrations demands the recording and further quantitative analysis of laryngeal high-speed video (HSV). Quantification of the vocal fold vibration patterns requires as a first step the segmentation of the glottal area within each video frame from which the vibrating edges of the vocal folds are usually derived. Consequently, the outcome of any further vibration analysis depends on the quality of this initial segmentation process. In this work we propose for the first time a procedure to fully automatically segment not only the time-varying glottal area but also the vocal fold tissue directly from laryngeal high-speed video (HSV) using a deep Convolutional Neural Network (CNN) approach. Eighteen different Convolutional Neural Network (CNN) network configurations were trained and evaluated on totally 13,000 high-speed video (HSV) frames obtained from 56 healthy and 74 pathologic subjects. The segmentation quality of the best performing Convolutional Neural Network (CNN) model, which uses Long Short-Term Memory (LSTM) cells to take also the temporal context into account, was intensely investigated on 15 test video sequences comprising 100 consecutive images each. As performance measures the Dice Coefficient (DC) as well as the precisions of four anatomical landmark positions were used. Over all test data a mean Dice Coefficient (DC) of 0.85 was obtained for the glottis and 0.91 and 0.90 for the right and left vocal fold (VF) respectively. The grand average precision of the identified landmarks amounts 2.2 pixels and is in the same range as comparable manual expert segmentations which can be regarded as Gold Standard. The method proposed here requires no user interaction and overcomes the limitations of current semiautomatic or computational expensive approaches. Thus, it allows also for the analysis of long high-speed video (HSV)-sequences and holds the promise to facilitate the objective analysis of vocal fold vibrations in clinical routine. The here used dataset including the ground truth will be provided freely for all scientific groups to allow a quantitative benchmarking of segmentation approaches in future

    Vocal Fold Analysis From High Speed Videoendoscopic Data

    Get PDF
    High speed videoendoscopy (HSV) of the larynx far surpasses the limits of videostroboscopy in evaluating the vocal fold vibratory behavior by providing much higher frame rate. HSV enables the visualization of vocal fold vibratory pattern within an actual glottic cycle. This very detailed infor-mation on vocal fold vibratory characteristics could provide valuable information for the assessment of vocal fold vibratory function in disordered voices and the treatments effects of the behavioral, medical and surgical treatment procedures. In this work, we aim at addressing the problem of classi-fying voice disorders with varying etiology by following four steps described shortly. Our method-ology starts with glottis segmentation. Given a HSV data, the contour of the glottal opening area in each frame should be acquired. These contours record the vibration track of the vocal fold. After this, we obtain a reliable glottal axis that is necessary for getting certain vibratory features. The third step is the feature extraction on HSV data. In the last step, we complete the classification based on the features obtained from step 3. In this study, we first propose a novel glottis segmentation method based on simplified dynam-ic programming, which proves to be efficient and accurate. In addition, we introduce a new ap-proach for calculating the glottal axis. By comparing the proposed glottal axis determination meth-ods (modified linear regression) against state-of-the-art techniques, we demonstrate that our tech-nique is more reliable. After that, the concentration shifts to feature extraction and classification schemes. Eighteen different features are extracted and their discrimination is evaluated based on principal component analysis. Support vector machine and neural network are implemented to achieve the classification among three different types of vocal folds(normal vocal fold, unilateral vocal fold polyp, and unilateral vocal fold paralysis). The result demonstrates that the classification rates of four different tasks are all above 80%

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201

    A Hybrid Machine-Learning-Based Method for Analytic Representation of the Vocal Fold Edges during Connected Speech

    Get PDF
    Investigating the phonatory processes in connected speech from high-speed videoendoscopy (HSV) demands the accurate detection of the vocal fold edges during vibration. The present paper proposes a new spatio-temporal technique to automatically segment vocal fold edges in HSV data during running speech. The HSV data were recorded from a vocally normal adult during a reading of the “Rainbow Passage.” The introduced technique was based on an unsupervised machine-learning (ML) approach combined with an active contour modeling (ACM) technique (also known as a hybrid approach). The hybrid method was implemented to capture the edges of vocal folds on different HSV kymograms, extracted at various cross-sections of vocal folds during vibration. The k-means clustering method, an ML approach, was first applied to cluster the kymograms to identify the clustered glottal area and consequently provided an initialized contour for the ACM. The ACM algorithm was then used to precisely detect the glottal edges of the vibrating vocal folds. The developed algorithm was able to accurately track the vocal fold edges across frames with low computational cost and high robustness against image noise. This algorithm offers a fully automated tool for analyzing the vibratory features of vocal folds in connected speech

    Segmentación de la glotis en imágenes laríngeas usando snakes.

    Get PDF
    El presente trabajo describe una nueva metodología para la detección automática del espacio glotal de imágenes laríngeas tomadas a partir de 15 vídeos grabados por el servicio ORL del hospital Gregorio Marañón de Madrid con luz estroboscópica. El sistema desarrollado está basado en el modelo de contornos activos (snake). El algoritmo combina en el pre-procesado, algunas técnicas tradicionales (umbralización y filtro de mediana) con técnicas más sofisticadas tales como filtrado anisotrópico. De esta forma, se obtiene una imagen apropiada para el uso de las snakes. El valor escogido para el umbral es del 85% del pico máximo del histograma de la imagen; sobre este valor la información de los píxeles no es relevante. El filtro anisotrópico permite distinguir dos niveles de intensidad, uno es el fondo y el otro es la glotis. La inicialización se basa en obtener el módulo del campo GVF; de esta manera se asegura un proceso automático para la selección del contorno inicial. El rendimiento del algoritmo se valida usando los coeficientes de Pratt y se compara contra una segmentación realizada manualmente y otro método automático basado en la transformada de watershed. SUMMARY: The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images taken from 15 videos recorded by the ENT service of the Gregorio Marañon Hospital in Madrid with videostroboscopic equipment. The system is based on active contour models (snakes). The algorithm combines for the pre-processing, some traditional techniques (thresholding and median filter) with more sophisticated techniques such as anisotropic filtering. In this way, we obtain an appropriate image for the use of snake. The value selected for the threshold is 85% of the maximum peak of the image histogram; over this point the information of the pixels is not relevant. The anisotropic filter permits to distinguish two intensity levels, one is the background and the other one is the glottis. The initialization is based on the obtained magnitude by GVF field; in this manner an automatic process for the initial contour selection will be assured. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation and another automatic method based on the watershed transformation

    Medical Informatics and Data Analysis

    Get PDF
    During recent years, the use of advanced data analysis methods has increased in clinical and epidemiological research. This book emphasizes the practical aspects of new data analysis methods, and provides insight into new challenges in biostatistics, epidemiology, health sciences, dentistry, and clinical medicine. This book provides a readable text, giving advice on the reporting of new data analytical methods and data presentation. The book consists of 13 articles. Each article is self-contained and may be read independently according to the needs of the reader. The book is essential reading for postgraduate students as well as researchers from medicine and other sciences where statistical data analysis plays a central role

    Characterization of structural changes in spinal vertebrae based on perturbations to an adaptive model

    Get PDF
    Diffuse Idiopathic Skeletal Hyperostosis, or DISH, is a disease characterized by ossification of the entheses and the anterior longitudinal ligament. The diagnosis is made by visual analysis of an X-ray by a professional using the Resnick Criterion. The different experience among professionals and the fact that this criterion is only suitable in advanced stages of the disease make diagnosis difficult. Therefore, this work aims to contribute to the development of an auxiliary diagnostic tool for this disease. For this, a semi-automatic vertebral segmentation algorithm based on active morphological contours was proposed, comparing it with previous work and with segmentations made by experts on two radiographic images. Next, the corners of the vertebrae, where the disease manifests itself, were analyzed in order to characterize images with DISH. To accomplish this, it was assumed symmetry of the vertebrae and a Gaussian distribution of the histograms of those corners to analyze them and calculate two ratios: Left upper corner mean value / Right upper corner mean value (LS/RS) and Left lower corner mean value / Right lower corner mean value (LI/RI), in order to find a differentiating metric between vertebrae with pathology and those without. The results achieved by the algorithm were clearly superior to the previous work and similar to that of the experts. The analysis of pathologic vertebrae revealed a difference in the shift of the distributions of pathologic corners relative to non-pathologic ones, which is not seen in vertebrae without apparent pathology. Regarding the ratios, the LI/RI proved to be particularly effective in differentiating, being closer to 1 when pathology is not present.A Hiperostose Esquelética Idiopática Difusa, ou DISH, é uma doença caracterizada pela ossificação das entéses e do ligamento longitudinal anterior. O diagnóstico é realizado pela análise visual de um raio-X, por um profissional, utilizando o Critério de Resnick. A diferente experiência entre profissionais e o facto de este critério só ser adequado em fases avançadas da doença tornam o diagnóstico difícil. Por isso, este trabalho visa contribuir para o desenvolvimento de um instrumento auxiliar de diagnóstico desta doença. Para isso, foi proposto um algoritmo de segmentação de vertebras, semi-automático, baseado em contornos morfológicos ativos, comparando-o com o trabalho anterior e com as segmentações feitas por especialistas em duas imagens radiográficas. De seguida, foram analisadas as extremidades das vértebras, onde a doença se manifesta, com o objetivo de identificar imagens com DISH. Para tal, assumiu-se a simetria das vértebras e uma distribuição Gaussiana dos histogramas das extremidades para analisar as mesmas e calcular dois rácios: Valor médio do canto superior esquerdo / Valor médio do canto superior direito(LS/RS) e valor médio do canto inferior esquerdo /Valor médio do canto inferior direito(LI/RI), a fim de encontrar uma métrica diferenciadora das vértebras com patologia das não patológicas. Os resultados conseguidos pelo algoritmo foram claramente superiores ao do trabalho anterior e semelhantes ao dos peritos. A análise das vértebras patológicas revelou uma diferença na deslocação das distribuições dos cantos patológicos relativamente aos não patológicos, o que não se verifica em vértebras sem patologia aparente. Relativamente aos rácios, o LI/RI mostrou ser particularmente eficaz na diferenciação, estando mais próximo de 1 quando a patologia não está presente
    • …
    corecore