1,956 research outputs found

    Recent Progress in Plasmonic Biosensing Schemes for Virus Detection

    Get PDF
    27 páginasThe global burden of coronavirus disease 2019 (COVID-19) to public health and global economy has stressed the need for rapid and simple diagnostic methods. From this perspective, plasmonic-based biosensing can manage the threat of infectious diseases by providing timely virus monitoring. In recent years, many plasmonics’ platforms have embraced the challenge of offering on-site strategies to complement traditional diagnostic methods relying on the polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). This review compiled recent progress on the development of novel plasmonic sensing schemes for the effective control of virus-related diseases. A special focus was set on the utilization of plasmonic nanostructures in combination with other detection formats involving colorimetric, fluorescence, luminescence, or Raman scattering enhancement. The quantification of different viruses (e.g., hepatitis virus, influenza virus, norovirus, dengue virus, Ebola virus, Zika virus) with particular attention to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was reviewed from the perspective of the biomarker and the biological receptor immobilized on the sensor chip. Technological limitations including selectivity, stability, and monitoring in biological matrices were also reviewed for different plasmonic-sensing approaches.S

    Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications

    Get PDF
    The aim of this review is to summarize the most relevant contributions in the development of electrochemical sensors based on carbon materials in the recent years. There have been increasing numbers of reports on the first application of carbon derived materials for the preparation of an electrochemical sensor. These include carbon nanotubes, diamond like carbon films and diamond film-based sensors demonstrating that the particular structure of these carbon material and their unique properties make them a very attractive material for the design of electrochemical biosensors and gas sensors. Carbon nanotubes (CNT) have become one of the most extensively studied nanostructures because of their unique properties. CNT can enhance the electrochemical reactivity of important biomolecules and can promote the electron-transfer reactions of proteins (including those where the redox center is embedded deep within the glycoprotein shell). In addition to enhanced electrochemical reactivity, CNT-modified electrodes have been shown useful to be coated with biomolecules (e.g., nucleic acids) and to alleviate surface fouling effects (such as those involved in the NADH oxidation process). The remarkable sensitivity of CNT conductivity with the surface adsorbates permits the use of CNT as highly sensitive nanoscale sensors. These properties make CNT extremely attractive for a wide range of electrochemical sensors ranging from amperometric enzyme electrodes to DNA hybridization biosensors. Recently, a CNT sensor based fast diagnosis method using non-treated blood assay has been developed for specific detection of hepatitis B virus (HBV) (human liver diseases, such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma caused by hepatitis B virus). The linear detection limits for HBV plasma is in the range 0.5–3.0 μL−1 and for anti- HBVs 0.035–0.242 mg/mL in a 0.1 M NH4H2PO4 electrolyte solution. These detection limits enables early detection of HBV infection in suspected serum samples. Therefore, non-treated blood serum can be directly applied for real-time sensitive detection in medical diagnosis as well as in direct in vivo monitoring. Synthetic diamond has been recognized as an extremely attractive material for both (bio-) chemical sensing and as an interface to biological systems. Synthetic diamond have outstanding electrochemical properties, superior chemical inertness and biocompatibility. Recent advances in the synthesis of highly conducting nanocrystalline-diamond thin films and nano wires have lead to an entirely new class of electrochemical biosensors and bio-inorganic interfaces. In addition, it also combines with development of new chemical approaches to covalently attach biomolecules on the diamond surface also contributed to the advancement of diamond-based biosensors. The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulatorsemiconductor) platform for multi-parameter sensing is demonstrated with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration. This has also been extended for the label-free electrical monitoring of adsorption and binding of charged macromolecules. One more recent study demonstrated a novel bio-sensing platform, which is introduced by combination of a) geometrically controlled DNA bonding using vertically aligned diamond nano-wires and b) the superior electrochemical sensing properties of diamond as transducer material. Diamond nanowires can be a new approach towards next generation electrochemical gene sensor platforms. This review highlights the advantages of these carbon materials to promote different electron transfer reactions specially those related to biomolecules. Different strategies have been applied for constructing carbon material-based electrochemical sensors, their analytical performance and future prospects are discussed

    Microfabrication and Applications of Opto-Microfluidic Sensors

    Get PDF
    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost

    The 2019 surface acoustic waves roadmap

    Get PDF
    Today, surface acoustic waves (SAWs) and bulk acoustic waves are already two of the very few phononic technologies of industrial relevance and can been found in a myriad of devices employing these nanoscale earthquakes on a chip. Acoustic radio frequency filters, for instance, are integral parts of wireless devices. SAWs in particular find applications in life sciences and microfluidics for sensing and mixing of tiny amounts of liquids. In addition to this continuously growing number of applications, SAWs are ideally suited to probe and control elementary excitations in condensed matter at the limit of single quantum excitations. Even collective excitations, classical or quantum are nowadays coherently interfaced by SAWs. This wide, highly diverse, interdisciplinary and continuously expanding spectrum literally unites advanced sensing and manipulation applications. Remarkably, SAW technology is inherently multiscale and spans from single atomic or nanoscopic units up even to the millimeter scale. The aim of this Roadmap is to present a snapshot of the present state of surface acoustic wave science and technology in 2019 and provide an opinion on the challenges and opportunities that the future holds from a group of renown experts, covering the interdisciplinary key areas, ranging from fundamental quantum effects to practical applications of acoustic devices in life science

    Nanophotonics of 2-Dimensional Materials

    Get PDF
    2-Dimensional materials are of great interest because of novel and intriguing properties that emerge at the monolayer limit in comparison to bulk materials. To that end, this thesis is split into the study of two different 2-dimensional materials in the realm of nanophotonics. First, graphene is utilized for both passivating the surface of metallic nanoparticles from oxidation and as a platform for functionalization and integration into specific molecule sensing. The nanoparticles act as plasmonic nanoantennas, enhancing the electric field near the surface of the antenna. It is shown that graphene-encapsulated silver nanoantennas are oxidation resistant and optically stable over a 30 day period. The performance of the graphene-passivated silver nanoantennas outpaces that of the traditional material, gold, by ~60% in sensing bulk index changes in the range of n = 1.40 1.45. Graphene encapsulation can be extended to other plasmonic metals such as aluminum and copper, as well as fully integrate graphene-passivated Ag nanoantennas into biomolecular sensing devices. The second topic of this thesis is to study and enhance the luminescence of molybdenum disulfide (MoS2), a 2-dimensional semiconductor. Atomic layer deposition of SiO2 was used to encapsulate and the effectively etch a layer of bilayer MoS2 through reactive processes, which result in a chemically-doped MoS2 monolayer with enhanced luminescence properties. This new enhanced layer is two orders of magnitude more luminescent than the original material and one order of magnitude over that of an exfoliated monolayer. By coupling the enhanced MoS2 to an optical microdisk cavity, highly narrow emission can be produced from the original, broad luminescence. These sharp peaks can be utilized in biomolecule sensing through functionalization of the MoS2 layer. The effects of high-intensity optical pumping of the MoS2 in these microdisk cavities are also studied. Heat generation from non-radiative recombination causes thermally enabled oxidation of the optical material. This effect is shown to be not limited to MoS2, but affects WSe2 as well. This effect is shown to be minimized through the use of pulsed excitation, and the luminescence from high Q-factor microdisks was investigated using high-fluence femtosecond optical pulses

    The Environment and Interactions of Electrons in GaAs Quantum Dots

    Get PDF
    At the dawn of the twentieth century, the underpinnings of centuries-old classical physics were beginning to be unravelled by the advent of quantum mechanics. As well as fundamentally shifting the way we understand the very nature of reality, this quantum revolution has subsequently shaped and created entire fields, paving the way for previously unimaginable technology. The quintessential instance of such technology is the quantum computer, whose building blocks - quantum bits, or qubits - are premised on the uniquely quantum principles of superposition and entanglement. It is predicted that quantum computers will be capable of efficiently solving certain classically intractable problems. To build a quantum computer, it is necessary to find a system which exhibits these uniquely quantum phenomena. The success of silicon-based integrated circuits for classical computing made semiconductors an obvious architecture in which to focus experimental quantum computing efforts. The two-dimensional electron gas which forms at the interface of GaAs/AlGaAs heterostructures constitutes an ideal platform for isolating and controlling single electrons, encoding quantum information in their spin and charge states. This thesis broadly addresses three key challenges to quantum computing with GaAs qubits: scalability, particularly in the context of readout, unwanted interactions between fragile quantum states and their environment, and the facilitation of controllable, strong interactions between separated qubits as a means of generating entanglement. These significant, unavoidable challenges must be addressed in order for a future solid-state quantum computer to be viable

    Nanomaterials for Healthcare Biosensing Applications

    Get PDF
    In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered
    • …
    corecore