270 research outputs found

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica.Postprint (published version

    Calibration of the MIRAS Radiometers

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The microwave imaging radiometer with aperture synthesis (MIRAS) is formed by 69 total power radiometers, of which three are the noise-injection type. Their calibration is reviewed on the basis of the data gathered during more than eight years of operation. Internally calibrated gain and offset corrections with improved temporal stability are presented. New front-end loss characterization with lower seasonal dependence originated from external temperature swings is also proposed. Finally, a methodology to validate the external calibrations, with the instrument pointing to the cold sky, is developed. It seems to indicate that the change of orientation of the instrument, with associated thermal variations, may induce small changes in the radiometer front-end losses, thus introducing calibration errors.Peer ReviewedPostprint (author's final draft

    TriHex: combining formation flying, general circular orbits and alias-free imaging, for high resolution L-band aperture synthesis

    Get PDF
    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA), together with NASA’s Soil Moisture Active Passive (SMAP) mission, is providing a wealth of information to the user community for a wide range of applications. Although both missions are still operational, they have significantly exceeded their design life time. For this reason, ESA is looking at future mission concepts, which would adequately address the requirements of the passive L-band community beyond SMOS and SMAP. This article proposes one mission concept, TriHex, which has been found capable of achieving high spatial resolution, radiometric resolution, and accuracy, approaching the user needs. This is possible by the combination of aperture synthesis, formation flying, the use of general circular orbits, and alias-free imaging.Peer ReviewedPostprint (author's final draft

    SMOS instrument performance and calibration after six years in orbit

    Get PDF
    ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched 2-Nov-2009, has been in orbit for over 6 years, and its Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) in two dimensions keeps working well. The calibration strategy remains overall as established after the commissioning phase, with a few improvements. The data for this whole period has been reprocessed with a new fully polarimetric version of the Level-1 processor which includes a refined calibration schema for the antenna losses. This reprocessing has allowed the assessment of an improved performance benchmark. An overview of the results and the progress achieved in both calibration and image reconstruction is presented in this contribution.Peer ReviewedPostprint (author's final draft

    RAD - Research and Education 2010

    Get PDF

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort

    Revisiting the global patterns of seasonal cycle in sea surface salinity

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2020JC016789, https://doi.org/10.1029/2020JC016789.Argo profiling floats and L-band passive microwave remote sensing have significantly improved the global sampling of sea surface salinity (SSS) in the past 15 years, allowing the study of the range of SSS seasonal variability using concurrent satellite and in situ platforms. Here, harmonic analysis was applied to four 0.25° satellite products and two 1° in situ products between 2016 and 2018 to determine seasonal harmonic patterns. The 0.25° World Ocean Atlas (WOA) version 2018 was referenced to help assess the harmonic patterns from a long-term perspective based on the 3-year period. The results show that annual harmonic is the most characteristic signal of the seasonal cycle, and semiannual harmonic is important in regions influenced by monsoon and major rivers. The percentage of the observed variance that can be explained by harmonic modes varies with products, with values ranging between 50% and 72% for annual harmonic and between 15% and 19% for semiannual harmonic. The large spread in the explained variance by the annual harmonic reflects the large disparity in nonseasonal variance (or noise) in the different products. Satellite products are capable of capturing sharp SSS features on meso- and frontal scales and the patterns agree well with the WOA 2018. These products are, however, subject to the impacts of radiometric noises and are algorithm dependent. The coarser-resolution in situ products may underrepresent the full range of high-frequency small scale SSS variability when data record is short, which may have enlarged the explained SSS variance by the annual harmonic.L. Yu was funded by NASA Ocean Salinity Science Team (OSST) activities through Grant 80NSSC18K1335. FMB was funded by the NASA OSST through Grant 80NSSC18K1322. E. P. Dinnat was funded by NASA through Grant 80NSSC18K1443. This research is carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.2021-09-1
    • …
    corecore