5,567 research outputs found

    A Deep Journey into Super-resolution: A survey

    Full text link
    Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare 30+ state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep-learning based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed, shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmark have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems.Comment: Accepted in ACM Computing Survey

    Lightweight and Efficient Image Super-Resolution with Block State-based Recursive Network

    Full text link
    Recently, several deep learning-based image super-resolution methods have been developed by stacking massive numbers of layers. However, this leads too large model sizes and high computational complexities, thus some recursive parameter-sharing methods have been also proposed. Nevertheless, their designs do not properly utilize the potential of the recursive operation. In this paper, we propose a novel, lightweight, and efficient super-resolution method to maximize the usefulness of the recursive architecture, by introducing block state-based recursive network. By taking advantage of utilizing the block state, the recursive part of our model can easily track the status of the current image features. We show the benefits of the proposed method in terms of model size, speed, and efficiency. In addition, we show that our method outperforms the other state-of-the-art methods.Comment: The code is available at https://github.com/idearibosome/tf-bsrn-s

    SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks

    Full text link
    Single image super resolution is a very important computer vision task, with a wide range of applications. In recent years, the depth of the super-resolution model has been constantly increasing, but with a small increase in performance, it has brought a huge amount of computation and memory consumption. In this work, in order to make the super resolution models more effective, we proposed a novel single image super resolution method via recursive squeeze and excitation networks (SESR). By introducing the squeeze and excitation module, our SESR can model the interdependencies and relationships between channels and that makes our model more efficiency. In addition, the recursive structure and progressive reconstruction method in our model minimized the layers and parameters and enabled SESR to simultaneously train multi-scale super resolution in a single model. After evaluating on four benchmark test sets, our model is proved to be above the state-of-the-art methods in terms of speed and accuracy.Comment: Preprint version with 6 pages for ICPR1

    SREdgeNet: Edge Enhanced Single Image Super Resolution using Dense Edge Detection Network and Feature Merge Network

    Full text link
    Deep learning based single image super-resolution (SR) methods have been rapidly evolved over the past few years and have yielded state-of-the-art performances over conventional methods. Since these methods usually minimized l1 loss between the output SR image and the ground truth image, they yielded very high peak signal-to-noise ratio (PSNR) that is inversely proportional to these losses. Unfortunately, minimizing these losses inevitably lead to blurred edges due to averaging of plausible solutions. Recently, SRGAN was proposed to avoid this average effect by minimizing perceptual losses instead of l1 loss and it yielded perceptually better SR images (or images with sharp edges) at the price of lowering PSNR. In this paper, we propose SREdgeNet, edge enhanced single image SR network, that was inspired by conventional SR theories so that average effect could be avoided not by changing the loss, but by changing the SR network property with the same l1 loss. Our SREdgeNet consists of 3 sequential deep neural network modules: the first module is any state-of-the-art SR network and we selected a variant of EDSR. The second module is any edge detection network taking the output of the first SR module as an input and we propose DenseEdgeNet for this module. Lastly, the third module is merging the outputs of the first and second modules to yield edge enhanced SR image and we propose MergeNet for this module. Qualitatively, our proposed method yielded images with sharp edges compared to other state-of-the-art SR methods. Quantitatively, our SREdgeNet yielded state-of-the-art performance in terms of structural similarity (SSIM) while maintained comparable PSNR for x8 enlargement.Comment: 10 pages, 9 figure

    Triple Attention Mixed Link Network for Single Image Super Resolution

    Full text link
    Single image super resolution is of great importance as a low-level computer vision task. Recent approaches with deep convolutional neural networks have achieved im-pressive performance. However, existing architectures have limitations due to the less sophisticated structure along with less strong representational power. In this work, to significantly enhance the feature representation, we proposed Triple Attention mixed link Network (TAN) which consists of 1) three different aspects (i.e., kernel, spatial and channel) of attention mechanisms and 2) fu-sion of both powerful residual and dense connections (i.e., mixed link). Specifically, the network with multi kernel learns multi hierarchical representations under different receptive fields. The output features are recalibrated by the effective kernel and channel attentions and feed into next layer partly residual and partly dense, which filters the information and enable the network to learn more powerful representations. The features finally pass through the spatial attention in the reconstruction network which generates a fusion of local and global information, let the network restore more details and improves the quality of reconstructed images. Thanks to the diverse feature recalibrations and the advanced information flow topology, our proposed model is strong enough to per-form against the state-of-the-art methods on the bench-mark evaluations

    Efficient Deep Neural Network for Photo-realistic Image Super-Resolution

    Full text link
    Recent progress in the deep learning-based models has improved photo-realistic (or perceptual) single-image super-resolution significantly. However, despite their powerful performance, many methods are difficult to apply to real-world applications because of the heavy computational requirements. To facilitate the use of a deep model under such demands, we focus on keeping the network efficient while maintaining its performance. In detail, we design an architecture that implements a cascading mechanism on a residual network to boost the performance with limited resources via multi-level feature fusion. In addition, our proposed model adopts group convolution and recursive scheme in order to achieve extreme efficiency. We further improve the perceptual quality of the output by employing the adversarial learning paradigm and a multi-scale discriminator approach. The performance of our method is investigated through extensive internal experiments and benchmark using various datasets. Our results show that our models outperform the recent methods with similar complexity, for both traditional pixel-based and perception-based tasks

    Adapting Image Super-Resolution State-of-the-arts and Learning Multi-model Ensemble for Video Super-Resolution

    Full text link
    Recently, image super-resolution has been widely studied and achieved significant progress by leveraging the power of deep convolutional neural networks. However, there has been limited advancement in video super-resolution (VSR) due to the complex temporal patterns in videos. In this paper, we investigate how to adapt state-of-the-art methods of image super-resolution for video super-resolution. The proposed adapting method is straightforward. The information among successive frames is well exploited, while the overhead on the original image super-resolution method is negligible. Furthermore, we propose a learning-based method to ensemble the outputs from multiple super-resolution models. Our methods show superior performance and rank second in the NTIRE2019 Video Super-Resolution Challenge Track 1

    Enhancing Perceptual Loss with Adversarial Feature Matching for Super-Resolution

    Full text link
    Single image super-resolution (SISR) is an ill-posed problem with an indeterminate number of valid solutions. Solving this problem with neural networks would require access to extensive experience, either presented as a large training set over natural images or a condensed representation from another pre-trained network. Perceptual loss functions, which belong to the latter category, have achieved breakthrough success in SISR and several other computer vision tasks. While perceptual loss plays a central role in the generation of photo-realistic images, it also produces undesired pattern artifacts in the super-resolved outputs. In this paper, we show that the root cause of these pattern artifacts can be traced back to a mismatch between the pre-training objective of perceptual loss and the super-resolution objective. To address this issue, we propose to augment the existing perceptual loss formulation with a novel content loss function that uses the latent features of a discriminator network to filter the unwanted artifacts across several levels of adversarial similarity. Further, our modification has a stabilizing effect on non-convex optimization in adversarial training. The proposed approach offers notable gains in perceptual quality based on an extensive human evaluation study and a competent reconstruction fidelity when tested on objective evaluation metrics.Comment: Accepted for publication in the International Joint Conference on Neural Networks (IJCNN) 202

    Super-Resolution with Deep Adaptive Image Resampling

    Full text link
    Deep learning based methods have recently pushed the state-of-the-art on the problem of Single Image Super-Resolution (SISR). In this work, we revisit the more traditional interpolation-based methods, that were popular before, now with the help of deep learning. In particular, we propose to use a Convolutional Neural Network (CNN) to estimate spatially variant interpolation kernels and apply the estimated kernels adaptively to each position in the image. The whole model is trained in an end-to-end manner. We explore two ways to improve the results for the case of large upscaling factors, and propose a recursive extension of our basic model. This achieves results that are on par with state-of-the-art methods. We visualize the estimated adaptive interpolation kernels to gain more insight on the effectiveness of the proposed method. We also extend the method to the task of joint image filtering and again achieve state-of-the-art performance

    Image Super-Resolution via Dual-State Recurrent Networks

    Full text link
    Advances in image super-resolution (SR) have recently benefited significantly from rapid developments in deep neural networks. Inspired by these recent discoveries, we note that many state-of-the-art deep SR architectures can be reformulated as a single-state recurrent neural network (RNN) with finite unfoldings. In this paper, we explore new structures for SR based on this compact RNN view, leading us to a dual-state design, the Dual-State Recurrent Network (DSRN). Compared to its single state counterparts that operate at a fixed spatial resolution, DSRN exploits both low-resolution (LR) and high-resolution (HR) signals jointly. Recurrent signals are exchanged between these states in both directions (both LR to HR and HR to LR) via delayed feedback. Extensive quantitative and qualitative evaluations on benchmark datasets and on a recent challenge demonstrate that the proposed DSRN performs favorably against state-of-the-art algorithms in terms of both memory consumption and predictive accuracy
    • …
    corecore