77 research outputs found

    Enhanced processing of 1-km spatial resolution fAPAR time series for sugarcane yield forecasting and monitoring

    Get PDF
    A processing of remotely-sensed Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) time series at 1-km spatial resolution is established to estimate sugarcane yield over the state of São Paulo, Brazil. It includes selecting adequate time series according to the signal spatial purity, using thermal time instead of calendar time and smoothing temporally the irregularly sampled observations. A systematic construction of various metrics and their capacity to predict yield is explored to identify the best performance, and see how timely the yield forecast can be made. The resulting dataset not only reveals a strong spatio-temporal structure, but is also capable of detecting both absolute changes in biomass accumulation and changes in its inter-annual variability. Sugarcane yield can thus be estimated with a RMSE of 1.5 t/ha (or 2%) without taking into account the strong linear trend in yield increase witnessed in the past decade. Including the trend reduces the error to 0.6 t/ha, correctly predicting whether the yield in a given year is above or below the trend in 90% of cases. The methodological framework presented here could be applied beyond the specific case of sugarcane in São Paulo, namely to other crops in other agro-ecological landscapes, to enhance current systems for monitoring agriculture or forecasting yield using remote sensing.JRC.H.4-Monitoring Agricultural Resource

    A high-resolution, integrated system for rice yield forecasting at district level

    Get PDF
    To meet the growing demands from public and private stakeholders for early yield estimates, a high-resolution (2 km × 2 km) rice yield forecasting system based on the integration of the WARM model and remote sensing (RS) technologies was developed. RS was used to identify rice-cropped area and to derive spatially distributed sowing dates, and for the dynamic assimilation of RS-derived leaf area index (LAI) data within the crop model. The system—tested for the main European rice production districts in Italy, Greece, and Spain—performed satisfactorily; >66% of the inter-annual yield variability was explained in six out of eight combinations of ecotype × district, with a maximum of 89% of the variability explained for the ‘Tropical Japonica’ cultivars in the Vercelli district (Italy). In seven out of eight cases, the assimilation of RS-derived LAI improved the forecasting capability, with minor differences due to the assimilation technology used (updating or recalibration). In particular, RS data reduced uncertainty by capturing factors that were not properly reproduced by the simulation model (given the uncertainty due to large-area simulations). The system, which is an extension of the one used for rice within the EC-JRC-MARS forecasting system, was used pre-operationally in 2015 and 2016 to provide early yield estimates to private companies and institutional stakeholders within the EU-FP7 ERMES project

    A Global Systematic Review of Improving Crop Model Estimations by Assimilating Remote Sensing Data: Implications for Small-Scale Agricultural Systems

    Get PDF
    There is a growing effort to use access to remote sensing data (RS) in conjunction with crop model simulation capability to improve the accuracy of crop growth and yield estimates. This is critical for sustainable agricultural management and food security, especially in farming communities with limited resources and data. Therefore, the objective of this study was to provide a systematic review of research on data assimilation and summarize how its application varies by country, crop, and farming systems. In addition, we highlight the implications of using process-based crop models (PBCMs) and data assimilation in small-scale farming systems. Using a strict search term, we searched the Scopus and Web of Science databases and found 497 potential publications. After screening for relevance using predefined inclusion and exclusion criteria, 123 publications were included in the final review. Our results show increasing global interest in RS data assimilation approaches; however, 81% of the studies were from countries with relatively high levels of agricultural production, technology, and innovation. There is increasing development of crop models, availability of RS data sources, and characterization of crop parameters assimilated into PBCMs. Most studies used recalibration or updating methods to mainly incorporate remotely sensed leaf area index from MODIS or Landsat into the WOrld FOod STudies (WOFOST) model to improve yield estimates for staple crops in large-scale and irrigated farming systems. However, these methods cannot compensate for the uncertainties in RS data and crop models. We concluded that further research on data assimilation using newly available high-resolution RS datasets, such as Sentinel-2, should be conducted to significantly improve simulations of rare crops and small-scale rainfed farming systems. This is critical for informing local crop management decisions to improve policy and food security assessments

    Remote Sensing Based Yield Estimation in a Stochastic Framework – Case Study of Durum Wheat in Tunisia

    Get PDF
    Multitemporal optical remote sensing constitutes a useful, cost efficient method for crop status monitoring over large areas. Modelers interested in yield monitoring can rely on past and recent observations of crop reflectance to estimate aboveground biomass and infer the likely yield. Therefore, in a framework constrained by the information availability, remote sensing data to yield conversion parameters are to be estimated. Statistical models are suitable for this purpose given their ability to deal with statistical errors. This paper explores the performance in yield estimation of various remote sensing indicators based on varying degrees of bio-physical insight, in interaction with statistical methods (linear regressions) that rely on different hypotheses. Jackknifed results (leave one year out) are presented for the case of wheat yield regional estimation in Tunisia using the SPOT-VEGETATION instrument.JRC.H.4-Monitoring Agricultural Resource

    Advancing agricultural monitoring for improved yield estimations using SPOT-VGT and PROBA-V type remote sensing data

    Full text link
    Accurate and timely crop condition monitoring is crucial for food management and the economic development of any nation. However, accurately estimating crop yield from the field to global scales is a challenge. According to the global strategy of the World Bank, in order to improve national agricultural statistics, crop area, crop production, and crop yield are key variables that all countries should be able to provide. Crop yield assessment requires that both an estimation of the quantity of a product and the area provided for that product should be available. The definition seems simple; however, these measurements are time consuming and subject to error in many circumstances. Remote sensing is one of several methods used for crop yield estimation. The yield results from a combination of environmental factors, such as soil, weather, and farm management, which are responsible for the unique spectral signature of a crop captured by satellite images. Additionally, yield is an expression of the state, structure, and composition of the plant. Various indices, crop masks, and land observation sensors have been developed to remotely observe and control crops in different regions. This thesis focuses on how much low spatial resolution satellites, such as Project for On Board Autonomy Vegetation (PROBA V), can contribute to global crop monitoring by aiding the search for improved methods and datasets for better crop yield estimation. This thesis contains three chapters. The first chapter explores how an existing product, Dry Matter Productivity (DMP), that has been developed for Satellites Pour l’Observation de la Terre or Earth observing Satellites VeGeTation (SPOT VGT), and transferred to PROBA V, can be improved to more closely relate to yield anomalies across selected regions. This chapter also covers the testing of the contribution of stress factors to improve wheat and maize yield estimations. According to Monteith’s theory, crop biomass linearly correlates with the amount of Absorbed Photosynthetically Active Radiation (APAR) and constant Radiation Use Efficiency (RUE) downregulated by stress factors such as CO2, fertilization, temperature, and water stress. The objective of this chapter is to investigate the relative importance of these stress factors in relation to the regional biomass production and yield. The production efficiency model Copernicus Global Land Service Dry Matter Productivity (CGLS DMP), which follows Monteith’s theory, is modified and evaluated for common wheat and silage maize in France, Belgium, and Morocco using SPOT VGT for the 1999–2012 period. The correlations between the crop yield data and the cumulative modified DMP, CGLS DMP, Fraction of APAR (fAPAR), and Normalized Difference Vegetation Index (NDVI) values are analyzed for different crop growth stages. The best results are obtained when combinations of the most appropriate stress factors are included for each selected region, and the modified DMP during the reproductive stage is accumulated. Though no single solution can demonstrate an improvement of the global product, the findings support an extension of the methodology to other regions of the world. The second chapter demonstrates how PROBA V can be used effectively for crop identification mapping by utilizing spectral matching techniques and phenological characteristics of different crop types. The study sites are agricultural areas spread across the globe, located in Flanders (Belgium), Sria (Russia), Kyiv (Ukraine), and Sao Paulo (Brazil). The data are collected for the 2014–2015 season. For each pure pixel within a field, the NDVI profile of the crop type for its growing season is matched with the reference NDVI profile. Three temporal windows are tested within the growing season: green up to senescence, green up to dormancy, and minimum NDVI at the beginning of the growing season to minimum NDVI at the end of the growing season. In order of importance, the crop phenological development period, parcel size, shorter time window, number of ground truth parcels, and crop calendar similarity are the main reasons behind the differences between the results. The methodology described in this chapter demonstrates the potentials and limitations of using 100 m PROBA V with revisiting frequency every 5 days in crop identification across different regions of the world. The final chapter explores the trade off between the different spatial resolutions provided by PROBA V products versus the temporal frequency and, additionally, explores the use of thermal time to improve statistical yield estimations. The ground data are winter wheat yields at the field level for 39 fields across Northern France during one growing season 2014–2015. An asymmetric double sigmoid function is fitted, and the NDVI values are integrated over thermal time and over calendar time for the central pixel of the field, exploring different thresholds to mark the start and end of the cropping season. The integrated NDVI values with different NDVI thresholds are used as a proxy for yield. In addition, a pixel purity analysis is performed for different purity thresholds at the 100 m, 300 m, and 1 km resolutions. The findings demonstrate that while estimating winter wheat yields at the field level with pure pixels from PROBA V products, the best correlation is obtained with a 100 m resolution product. However, several fields must be omitted due to the lack of observations throughout the growing season with the 100 m resolution dataset, as this product has a lower temporal resolution compared to 300 m and 1 km. This thesis is a modest contribution to the remote sensing and data analysis field with its own merits, in particular with respect to PROBA V. The experiments provide interesting insight into the PROBA V dataset at 1 km, 300 m, and 100 m resolutions. Specifically, the results show that 100 m spatial resolution imagery could be used effectively and advantageously in agricultural crop monitoring and crop identification at local – field level – and regional – the administrative regions defined by the national governments – levels. Furthermore, this thesis discusses the limitations of using a low resolution satellite, such as the PROBA V 100 m dataset, in crop monitoring and identification. Also, several recommendations are made for space agencies that can be used when designing the new generation of satellites

    On The Response Of The European Vegetation Phenology To Hydroclimatic Anomalies

    Get PDF
    Climate change is expected to alter vegetation and carbon cycle processes, with implications for ecosystems and feedback to regional and global climate. Notably, understanding the sensitivity of vegetation to the anomalies of precipitation and temperature over different land cover classes and the corresponding temporal response is essential for improved climate prediction. In this paper, we analyse vegetation response to hydroclimatic forcings using the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from SeaWiFS (1998-2002) and MERIS (2003-2011) sensors at 1 km resolution. Based on land cover and pixel-wise analysis, we quantify the extent of the dependence between the FAPAR, and ultimately the phenology, and the anomalies of precipitation and temperature over Europe. Statistical tests are performed to establish where this correlation may be regarded as statistically dependent. Further, we assess a statistical link between the climate variables and a set of phenological metrics defined from FAPAR measurement. Variation in the phenological response to the unusual values of precipitation and temperature can be interpreted as the result of balanced opposite effects of water and temperature on vegetation processes. Results suggest very different responses on different land cover classes and timing seasons. The degree of observed coupled behaviour also indicates that European phenology may be quite sensitive to the perturbations in precipitation and temperature regimes such as those induced by the climate change.JRC.H.7-Climate Risk Managemen

    A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data

    Get PDF
    Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes, and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness, and growing season length) often termed “land surface phenology,” as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data-processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multiscale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams, and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization

    Evaluating the quality of remote sensing-based agricultural water productivity data

    Get PDF
    corecore