2,273 research outputs found

    Management by Trajectory: Improving Predictability for Airspace Operations

    Get PDF
    In the present-day National Airspace System, the air traffic management system attempts to predict the trajectory for each flight based on the flight plan and scheduled or controlled departure time. However, gaps in trajectory data and models, coupled with tactical control actions that are not communicated to automation systems or other stakeholders, lead to trajectory predictions that are less accurate than they could be. This affects traffic flow management performance. Management by Trajectory (MBT) is a NASA concept for air traffic management in which every flight operates in accordance with a 4D trajectory that is negotiated between the airspace user and the FAA to account for the airspace users goals while complying with NAS constraints. The primary benefit of MBT is an improvement in system performance due to increased trajectory predictability and stability, which result from managing traffic in all four dimensions (2D route, vertical, and time), ensuring that changes to the flights trajectory are incorporated into the assigned trajectory, and utilizing improved time or arrival control standards. Importantly, the performance improvements support increasing efficiency without increasing collision risk. This paper provides an overview of MBT and describes fast-time simulation results evaluating the safety, performance, and efficiency effects of MBT

    Integrated and joint optimisation of runway-taxiway-apron operations on airport surface

    Get PDF
    Airports are the main bottlenecks in the Air Traffic Management (ATM) system. The predicted 84% increase in global air traffic in the next two decades has rendered the improvement of airport operational efficiency a key issue in ATM. Although the operations on runways, taxiways, and aprons are highly interconnected and interdependent, the current practice is not integrated and piecemeal, and overly relies on the experience of air traffic controllers and stand allocators to manage operations, which has resulted in sub-optimal performance of the airport surface in terms of operational efficiency, capacity, and safety. This thesis proposes a mixed qualitative-quantitative methodology for integrated and joint optimisation of runways, taxiways, and aprons, aiming to improve the efficiency of airport surface operations by integrating the operations of all three resources and optimising their coordination. This is achieved through a two-stage optimisation procedure: (1) the Integrated Apron and Runway Assignment (IARA) model, which optimises the apron and runway allocations for individual aircraft on a pre-tactical level, and (2) the Integrated Dynamic Routing and Off-block (IDRO) model, which generates taxiing routes and off-block timing decisions for aircraft on an operational (real-time) level. This two-stage procedure considers the interdependencies of the operations of different airport resources, detailed network configurations, air traffic flow characteristics, and operational rules and constraints. The proposed framework is implemented and assessed in a case study at Beijing Capital International Airport. Compared to the current operations, the proposed apron-runway assignment reduces total taxiing distance, average taxiing time, taxiing conflicts, runway queuing time and fuel consumption respectively by 15.5%, 15.28%, 45.1%, [58.7%, 35.3%, 16%] (RWY01, RWY36R, RWY36L) and 6.6%; gated assignment is increased by 11.8%. The operational feasibility of this proposed framework is further validated qualitatively by subject matter experts (SMEs). The potential impact of the integrated apron-runway-taxiway operation is explored with a discussion of its real-world implementation issues and recommendations for industrial and academic practice.Open Acces

    System-Oriented Runway Management Concept of Operations

    Get PDF
    This document describes a concept for runway management that maximizes the overall efficiency of arrival and departure operations at an airport or group of airports. Specifically, by planning airport runway configurations/usage, it focuses on the efficiency with which arrival flights reach their parking gates from their arrival fixes and departure flights exit the terminal airspace from their parking gates. In the future, the concept could be expanded to include the management of other limited airport resources. While most easily described in the context of a single airport, the concept applies equally well to a group of airports that comprise a metroplex (i.e., airports in close proximity that share resources such that operations at the airports are at least partially dependent) by including the coordination of runway usage decisions between the airports. In fact, the potential benefit of the concept is expected to be larger in future metroplex environments due to the increasing need to coordinate the operations at proximate airports to more efficiently share limited airspace resources. This concept, called System-Oriented Runway Management (SORM), is further broken down into a set of airport traffic management functions that share the principle that operational performance must be measured over the complete surface and airborne trajectories of the airport's arrivals and departures. The "system-oriented" term derives from the belief that the traffic management objective must consider the efficiency of operations over a wide range of aircraft movements and National Airspace System (NAS) dynamics. The SORM concept is comprised of three primary elements: strategic airport capacity planning, airport configuration management, and combined arrival/departure runway planning. Some aspects of the SORM concept, such as using airport configuration management1 as a mechanism for improving aircraft efficiency, are novel. Other elements (e.g., runway scheduling, which is a part of combined arrival/departure runway scheduling) have been well studied, but are included in the concept for completeness and to allow the concept to define the necessary relationship among the elements. The goal of this document is to describe the overall SORM concept and how it would apply both within the NAS and potential future Next Generation Air Traffic System (NextGen) environments, including research conducted to date. Note that the concept is based on the belief that runways are the primary constraint and the decision point for controlling efficiency, but the efficiency of runway management must be measured over a wide range of space and time. Implementation of the SORM concept is envisioned through a collection of complementary, necessary capabilities collectively focused on ensuring efficient arrival and departure traffic management, where that efficiency is measured not only in terms of runway efficiency but in terms of the overall trajectories between parking gates and transition fixes. For the more original elements of the concept-airport configuration management-this document proposes specific air traffic management (ATM) decision-support automation for realizing the concept

    A System Level Study of New Wake Turbulence Separation Concepts and Their Impact on Airport Capacity

    Get PDF
    The air transportation industry continues to grow worldwide, but demand is often limited by available airspace and airport capacity. This thesis focuses on evaluating new air traffic procedures: specifically, new and emerging wake turbulence separation rules that could potentially increase runway capacity based on today’s knowledge of wake vortex turbulence and technological capabilities. While legacy wake separation rules establish aircraft-classes based on weight of aircraft, these new separation rules can define separation standards by considering other aircraft parameters and dynamic wind conditions. A fast-time runway system model is developed for studying these wake separation rules, using Monte-Carlo simulations, to provide accurate and realistic runway capacity estimates based on the randomness of arrival and departure operations. A total of nine new proposed wake separation rules are analyzed in detail, which include both distance-based and time-based methods, as well as static and dynamic concepts. Seven of the busiest and most delayed U.S. airports are selected as case studies for the illustration of runway capacity benefits enabled by these new wake separation rules: Boston (BOS), New York J.F. Kennedy (JFK), New York LaGuardia (LGA), Newark (EWR), San Francisco (SFO), Los Angeles (LAX), and Chicago O’Hare (ORD). For a detailed capacity analysis, the new wake separation rules are tested under the most constraining runway configurations at each of these airports. The results indicate that increasing the number of aircraft wake categories can increase runway capacity, but the added benefits become smaller with each new category added. A five-or six-category wake separation system can capture most of the runway capacity that can be achieved with a static pair-wise system. Additionally, shifting wake category boundaries between airports as a function of local fleet mix can provide additional runway capacity benefits, meaning that airport specific wake separation rules can increase capacity over a universal separation rule system. Among the new wake separation rules, the results indicate that reducing wake separations further from current minimum separations (separation values of 2NM or less) can shift the operational bottleneck from the approach path to the runway, as runway occupancy time becomes the limiting factor for inter-arrival separations. The findings from the time-based separation rule demonstrate that switching from distance-based separations to time-based separations in strong headwind conditions can recover significant lost capacity. Time-based separation rules can be of great value 4 to increase operational reliability and capacity predictability at airports in all weather conditions. Moreover, the results also indicate that a reduction in minimum separations enabled by dynamic wind and aircraft information can offer marginal runway capacity benefits over the capacity enabled by static pair-wise wake separations, as more and more aircraft pairs become limited by runway occupancy time. Therefore, a joint effort is needed for reducing both wake separations and runway occupancy in order to accommodate future air traffic demand.This project was funded under the FAA NEXTOR II Center of Excellence

    A Hybrid Tabu/Scatter Search Algorithm for Simulation-Based Optimization of Multi-Objective Runway Operations Scheduling

    Get PDF
    As air traffic continues to increase, air traffic flow management is becoming more challenging to effectively and efficiently utilize airport capacity without compromising safety, environmental and economic requirements. Since runways are often the primary limiting factor in airport capacity, runway operations scheduling emerge as an important problem to be solved to alleviate flight delays and air traffic congestion while reducing unnecessary fuel consumption and negative environmental impacts. However, even a moderately sized real-life runway operations scheduling problem tends to be too complex to be solved by analytical methods, where all mathematical models for this problem belong to the complexity class of NP-Hard in a strong sense due to combinatorial nature of the problem. Therefore, it is only possible to solve practical runway operations scheduling problem by making a large number of simplifications and assumptions in a deterministic context. As a result, most analytical models proposed in the literature suffer from too much abstraction, avoid uncertainties and, in turn, have little applicability in practice. On the other hand, simulation-based methods have the capability to characterize complex and stochastic real-life runway operations in detail, and to cope with several constraints and stakeholders’ preferences, which are commonly considered as important factors in practice. This dissertation proposes a simulation-based optimization (SbO) approach for multi-objective runway operations scheduling problem. The SbO approach utilizes a discrete-event simulation model for accounting for uncertain conditions, and an optimization component for finding the best known Pareto set of solutions. This approach explicitly considers uncertainty to decrease the real operational cost of the runway operations as well as fairness among aircraft as part of the optimization process. Due to the problem’s large, complex and unstructured search space, a hybrid Tabu/Scatter Search algorithm is developed to find solutions by using an elitist strategy to preserve non-dominated solutions, a dynamic update mechanism to produce high-quality solutions and a rebuilding strategy to promote solution diversity. The proposed algorithm is applied to bi-objective (i.e., maximizing runway utilization and fairness) runway operations schedule optimization as the optimization component of the SbO framework, where the developed simulation model acts as an external function evaluator. To the best of our knowledge, this is the first SbO approach that explicitly considers uncertainties in the development of schedules for runway operations as well as considers fairness as a secondary objective. In addition, computational experiments are conducted using real-life datasets for a major US airport to demonstrate that the proposed approach is effective and computationally tractable in a practical sense. In the experimental design, statistical design of experiments method is employed to analyze the impacts of parameters on the simulation as well as on the optimization component’s performance, and to identify the appropriate parameter levels. The results show that the implementation of the proposed SbO approach provides operational benefits when compared to First-Come-First-Served (FCFS) and deterministic approaches without compromising schedule fairness. It is also shown that proposed algorithm is capable of generating a set of solutions that represent the inherent trade-offs between the objectives that are considered. The proposed decision-making algorithm might be used as part of decision support tools to aid air traffic controllers in solving the real-life runway operations scheduling problem

    Life-Cycle Cost/Benefit Assessment of Expedite Departure Path (EDP)

    Get PDF
    This report presents a life-cycle cost/benefit assessment (LCCBA) of Expedite Departure Path (EDP), an air traffic control Decision Support Tool (DST) currently under development at NASA. This assessment is an update of a previous study performed by bd Systems, Inc. (bd) during FY01, with the following revisions: The life-cycle cost assessment methodology developed by bd for the previous study was refined and calibrated using Free Flight Phase 1 (FFP1) cost information for Traffic Management Advisor (TMA, or TMA-SC in the FAA's terminology). Adjustments were also made to the site selection and deployment scheduling methodology to include airspace complexity as a factor. This technique was also applied to the benefit extrapolation methodology to better estimate potential benefits for other years, and at other sites. This study employed a new benefit estimating methodology because bd s previous single year potential benefit assessment of EDP used unrealistic assumptions that resulted in optimistic estimates. This methodology uses an air traffic simulation approach to reasonably predict the impacts from the implementation of EDP. The results of the costs and benefits analyses were then integrated into a life-cycle cost/benefit assessment

    An Optimistic Planning Approach for the Aircraft Landing Problem

    Get PDF
    International audienceThe Aircraft Landing Problem consists in sequencing aircraft on the available runways and scheduling their landing times taking into consideration several operational constraints, in order to increase the runway capacity and/or to reduce delays.In this work we propose a new Mixed Integer Programming (MIP) model for sequencing and scheduling aircraft landings on a single or multiple independent runways incorporating safety constraints by means of separation between aircraft at runways threshold. Due to the NP-hardness of the problem, solving directly the MIP model for large realistic instances yields redhibitory computation times. Therefore, we introduce a novel heuristic search methodology based on Optimistic Planning that significantly improve the FCFS (First-Come First-Served) solution, and provides good-quality solutions inreasonable computational time. The solution approach is then tested on medium and large realistic instances generated from real-world traffic on Paris-Orly airport to show the benefit of our approach

    Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling Problems on Multiple Runways

    Get PDF
    The problem addressed in this dissertation is the Aircraft Sequencing Problem (ASP) in which a schedule must be developed to determine the assignment of each aircraft to a runway, the appropriate sequence of aircraft on each runway, and their departing or landing times. The dissertation examines the ASP over multiple runways, under mixed mode operations with the objective of minimizing the total weighted tardiness of aircraft landings and departures simultaneously. To prevent the dangers associated with wake-vortex effects, separation times enforced by Aviation Administrations (e.g., FAA) are considered, adding another level of complexity given that such times are sequence-dependent. Due to the problem being NP-hard, it is computationally difficult to solve large scale instances in a reasonable amount of time. Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are introduced to improve solutions initially constructed by the proposed greedy algorithms. The performance (solution quality and computational time) of the various algorithms is compared to the optimal solutions and to each other. The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP) as air traffic systems frequently encounter various disruptions due to unexpected events such as inclement weather, aircraft failures or personnel shortages rendering the initial plan suboptimal or even obsolete in some cases. This research considers disruptions including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is formulated as a multi-objective optimization problem in which both the schedule\u27s quality and stability are of interest. The objectives consist of the total weighted start times (solution quality), total weighted start time deviation, and total weighted runway deviation (instability measures). Repair and complete regeneration approximate algorithms are developed for each type of disruptive events. The algorithms are tested against difficult benchmark problems and the solutions are compared to optimal solutions in terms of solution quality, schedule stability and computational time

    Airport capacity dynamics: A ‘proof of concept’ approach

    Get PDF
    The continuing growth in aviation has meant that the 35 largest airports in Europe reached saturation in 2005. The consequences have been increasing air traffic congestion, delays and associated costs. There is therefore a clear need to create more capacity. However, airports in particular and the air transport system in general are also subject to sudden fluctuations in demand and capacity. This research synthesizes the mechanisms of airport capacity fluctuations through the analytical formulation of concepts of capacity dynamics, capacity elasticities and capacity stability. It demonstrates the usability of these concepts through, firstly, a case study application to Brussels National Airport and, secondly, the development of a 'proof of concept' decision-support tool for strategic and tactical airport planning. Capacity dynamics and elasticities provide a performance indication as to how quickly capacity is able to change in response to fluctuations brought about by one or more capacity disrupters, whilst capacity stability provides airport planners with a measure of capacity robustness. These three concepts - capacity dynamics, elasticities and stability - contribute to a better a priori understanding of the airport system to be modelled. They demonstrate a better quantification of the impact and sensitivity of all the factors that affect runway capacity. It is also shown how the three concepts can assist in a better quantification of the risk of potential capacity fluctuation within the scope of airport planning. Based on this analytical formulation and quantification, mitigation should be an integral part of any effective airport plan in order to predict better the response to any given potential capacity degradation. It has been found that, from a capacity perspective, an airport becomes less stable the higher its level of performance. This capacity/stability paradox enables the ultimate goal of investment in capacity enhancement to be challenged, and it is legitimately questioned whether a similar investment would not be more worthwhile at secondary airports rather than at major airports
    • …
    corecore