81,370 research outputs found

    iTETRIS: An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions

    Get PDF
    Wireless vehicular cooperative systems have been identified as an attractive solution to improve road traffic management, thereby contributing to the European goal of safer, cleaner, and more efficient and sustainable traffic solutions. V2V-V2I communication technologies can improve traffic management through real-time exchange of data among vehicles and with road infrastructure. It is also of great importance to investigate the adequate combination of V2V and V2I technologies to ensure the continuous and costefficient operation of traffic management solutions based on wireless vehicular cooperative solutions. However, to adequately design and optimize these communication protocols and analyze the potential of wireless vehicular cooperative systems to improve road traffic management, adequate testbeds and field operational tests need to be conducted. Despite the potential of Field Operational Tests to get the first insights into the benefits and problems faced in the development of wireless vehicular cooperative systems, there is yet the need to evaluate in the long term and large dimension the true potential benefits of wireless vehicular cooperative systems to improve traffic efficiency. To this aim, iTETRIS is devoted to the development of advanced tools coupling traffic and wireless communication simulators

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    ANFIS Modeling of Dynamic Load Balancing in LTE

    Get PDF
    Modelling of ill-defined or unpredictable systems can be very challenging. Most models have relied on conventional mathematical models which does not adequately track some of the multifaceted challenges of such a system. Load balancing, which is a self-optimization operation of Self-Organizing Networks (SON), aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. While some of them have a very buoyant theoretical basis, they are not practical. Furthermore, most of the techniques proposed the use of an iterative algorithm, which in itself is not computationally efficient as it does not take the unpredictable fluctuation of network load into consideration. This chapter proposes the use of soft computing, precisely Adaptive Neuro-Fuzzy Inference System (ANFIS) model, for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuition. Three key load parameters (number of satisfied user in the net- work, virtual load of the serving eNodeB, and the overall state of the target eNodeB) are used to adjust the hysteresis value for load balancing

    Following people through time : an analysis of individual residential mobility biographies

    Get PDF
    Maarten van Ham’s contribution to this research was partly made possible through the financial support of the EU Marie Curie programme under the European Union's Seventh Framework Programme (FP/2007-2013) / Career Integration Grant n. PCIG10-GA-2011-303728 (CIG Grant NBHCHOICE, Neighbourhood choice, neighbourhood sorting, and neighbourhood effects).The life course framework guides us towards investigating how dynamic life course careers affect residential mobility decision-making and behaviour throughout long periods of individual lifetimes. However, most longitudinal studies linking mobility decision-making to subsequent moving behaviour focus only on year-to-year transitions. This study moves beyond this snapshot approach by analysing the long-term sequencing of moving desires and mobility behaviour within individual lives. Using novel techniques to visualise the desire–mobility sequences of British Household Panel Survey respondents, the study demonstrates that revealing the meanings and significance of particular transitions in moving desires and mobility behaviour requires these transitions to be arranged into mobility biographies. The results highlight the oft-neglected importance of residential stability over the life course, uncovering groups of individuals persistently unable to act in accordance with their moving desires.PostprintPeer reviewe
    • …
    corecore