10,502 research outputs found

    IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

    Get PDF
    This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.Comment: 12 pages; appendix adde

    Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering

    Full text link
    User information needs vary significantly across different tasks, and therefore their queries will also differ considerably in their expressiveness and semantics. Many studies have been proposed to model such query diversity by obtaining query types and building query-dependent ranking models. These studies typically require either a labeled query dataset or clicks from multiple users aggregated over the same document. These techniques, however, are not applicable when manual query labeling is not viable, and aggregated clicks are unavailable due to the private nature of the document collection, e.g., in email search scenarios. In this paper, we study how to obtain query type in an unsupervised fashion and how to incorporate this information into query-dependent ranking models. We first develop a hierarchical clustering algorithm based on truncated SVD and varimax rotation to obtain coarse-to-fine query types. Then, we study three query-dependent ranking models, including two neural models that leverage query type information as additional features, and one novel multi-task neural model that views query type as the label for the auxiliary query cluster prediction task. This multi-task model is trained to simultaneously rank documents and predict query types. Our experiments on tens of millions of real-world email search queries demonstrate that the proposed multi-task model can significantly outperform the baseline neural ranking models, which either do not incorporate query type information or just simply feed query type as an additional feature.Comment: CIKM 201

    Learning to select for information retrieval

    Get PDF
    The effective ranking of documents in search engines is based on various document features, such as the frequency of the query terms in each document, the length, or the authoritativeness of each document. In order to obtain a better retrieval performance, instead of using a single or a few features, there is a growing trend to create a ranking function by applying a learning to rank technique on a large set of features. Learning to rank techniques aim to generate an effective document ranking function by combining a large number of document features. Different ranking functions can be generated by using different learning to rank techniques or on different document feature sets. While the generated ranking function may be uniformly applied to all queries, several studies have shown that different ranking functions favour different queries, and that the retrieval performance can be significantly enhanced if an appropriate ranking function is selected for each individual query. This thesis proposes Learning to Select (LTS), a novel framework that selectively applies an appropriate ranking function on a per-query basis, regardless of the given query's type and the number of candidate ranking functions. In the learning to select framework, the effectiveness of a ranking function for an unseen query is estimated from the available neighbouring training queries. The proposed framework employs a classification technique (e.g. k-nearest neighbour) to identify neighbouring training queries for an unseen query by using a query feature. In particular, a divergence measure (e.g. Jensen-Shannon), which determines the extent to which a document ranking function alters the scores of an initial ranking of documents for a given query, is proposed for use as a query feature. The ranking function which performs the best on the identified training query set is then chosen for the unseen query. The proposed framework is thoroughly evaluated on two different TREC retrieval tasks (namely, Web search and adhoc search tasks) and on two large standard LETOR feature sets, which contain as many as 64 document features, deriving conclusions concerning the key components of LTS, namely the query feature and the identification of neighbouring queries components. Two different types of experiments are conducted. The first one is to select an appropriate ranking function from a number of candidate ranking functions. The second one is to select multiple appropriate document features from a number of candidate document features, for building a ranking function. Experimental results show that our proposed LTS framework is effective in both selecting an appropriate ranking function and selecting multiple appropriate document features, on a per-query basis. In addition, the retrieval performance is further enhanced when increasing the number of candidates, suggesting the robustness of the learning to select framework. This thesis also demonstrates how the LTS framework can be deployed to other search applications. These applications include the selective integration of a query independent feature into a document weighting scheme (e.g. BM25), the selective estimation of the relative importance of different query aspects in a search diversification task (the goal of the task is to retrieve a ranked list of documents that provides a maximum coverage for a given query, while avoiding excessive redundancy), and the selective application of an appropriate resource for expanding and enriching a given query for document search within an enterprise. The effectiveness of the LTS framework is observed across these search applications, and on different collections, including a large scale Web collection that contains over 50 million documents. This suggests the generality of the proposed learning to select framework. The main contributions of this thesis are the introduction of the LTS framework and the proposed use of divergence measures as query features for identifying similar queries. In addition, this thesis draws insights from a large set of experiments, involving four different standard collections, four different search tasks and large document feature sets. This illustrates the effectiveness, robustness and generality of the LTS framework in tackling various retrieval applications
    • …
    corecore