6,426 research outputs found

    Stable finite element pair for Stokes problem and discrete Stokes complex on quadrilateral grids

    Full text link
    In this paper, we first construct a nonconforming finite element pair for the incompressible Stokes problem on quadrilateral grids, and then construct a discrete Stokes complex associated with that finite element pair. The finite element spaces involved consist of piecewise polynomials only, and the divergence-free condition is imposed in a primal formulation. Combined with some existing results, these constructions can be generated onto grids that consist of both triangular and quadrilateral cells

    Complex flow patterns at the onset of annular electroconvection in a dielectric liquid subjected to an arbitrary unipolar injection

    Get PDF
    We numerically investigated the annular electroconvection that takes place in a dielectric liquid lying between two concentric cylinder electrodes. A uniform injection of arbitrary strengths either from the inner or outer cylinder introduces free charge carriers into the system, and the resulting Coulomb force induces electroconvection. The problem is characterized by a linear instability that corresponds to the onset of flow motion. The linear stability criteria were determined from direct numerical results and by linear stability analysis, and the results obtained with the two approaches show an excellent agreement. We focused on the fully developed flow pattern in the finite amplitude regime. We observed very different flow motions that were highly dependent on the injection strength.Ministerio de Ciencia y Tecnología FIS2011-25161Junta de Andalucía P10-FQM-5735Junta de Andalucía P09-FQM-458

    Boundary-Conforming Free-Surface Flow Computations: Interface Tracking for Linear, Higher-Order and Isogeometric Finite Elements

    Full text link
    The simulation of certain flow problems requires a means for modeling a free fluid surface; examples being viscoelastic die swell or fluid sloshing in tanks. In a finite-element context, this type of problem can, among many other options, be dealt with using an interface-tracking approach with the Deforming-Spatial-Domain/Stabilized-Space-Time (DSD/SST) formulation. A difficult issue that is connected with this type of approach is the determination of a suitable coupling mechanism between the fluid velocity at the boundary and the displacement of the boundary mesh nodes. In order to avoid large mesh distortions, one goal is to keep the nodal movements as small as possible; but of course still compliant with the no-penetration boundary condition. Standard displacement techniques are full velocity, velocity in a specific coordinate direction, and velocity in normal direction. In this work, we investigate how the interface-tracking approach can be combined with isogeometric analysis for the spatial discretization. If NURBS basis functions of sufficient order are used for both the geometry and the solution, both a continuous normal vector as well as the velocity are available on the entire boundary. This circumstance allows the weak imposition of the no-penetration boundary condition. We compare this option with an alternative that relies on strong imposition at discrete points. Furthermore, we examine several coupling methods between the fluid equations, boundary conditions, and equations for the adjustment of interior control point positions.Comment: 20 pages, 16 figure

    Large Eddy Simulations in Astrophysics

    Get PDF
    In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamical procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid scale turbulence energy model allows for a particularly elegant and physically well motivated way of preserving momentum and energy conservation in AMR simulations. Moreover, the notion of shear-improved models for inhomogeneous and non-stationary turbulence is introduced. Finally, applications of LES to turbulent combustion in thermonuclear supernovae, star formation and feedback in galaxies, and cosmological structure formation are reviewed.Comment: 64 pages, 23 figures, submitted to Living Reviews in Computational Astrophysic
    corecore