20 research outputs found

    A Q-learning scheme for fair coexistence between LTE and Wi-Fi in unlicensed spectrum

    Get PDF
    During the last years, the growth of wireless traffic pushed the wireless community to search for solutions that can assist in a more efficient management of the spectrum. Toward this direction, the operation of long term evolution (LTE) in unlicensed spectrum (LTE-U) has been proposed. Targeting a global solution that respects the regional regulations worldwide, 3GPP has published the LTE licensed assisted access (LAA) standard. According to LTE LAA, a listen before talk (LBT) procedure must precede any LTE transmission burst in the unlicensed spectrum. However, the proposed standard may cause coexistence issues between LTE and Wi-Fi, especially in the case that the latter does not use frame aggregation. Toward the provision of a balanced channel access, we have proposed mLTE-U that is an adaptive LTE LBT scheme. According to mLTE-U, LTE uses a variable transmission opportunity (TXOP), followed by a variable muting period. This muting period can be exploited by co-located Wi-Fi networks to gain access to the medium. In this paper, the system model of the mLTE-U scheme in coexistence with Wi-Fi is studied. In addition, mLTE-U is enhanced with a Q-learning technique that is used for autonomous selection of the appropriate combinations of TXOP and muting period that can provide fair coexistence between co-located mLTE-U and Wi-Fi networks. Simulation results showcase the performance of the proposed model and reveal the benefit of using Q-learning for self-adaptation of mLTE-U to the changes of the dynamic wireless environment, toward fair coexistence with Wi-Fi. Finally, the Q-learning mechanism is compared with conventional selection schemes showing the superior performance of the proposed model over less complex mechanisms

    Modelling and Analysis of Wi-Fi and LAA Coexistence with Priority Classes

    Get PDF
    The Licensed Assisted Access (LAA) is shown asa required technology to avoid overcrowding of the licensedbands by the increasing cellular traffic. Proposed by 3GPP,LAA uses a Listen Before Talk (LBT) and backoff mechanismsimilar to Wi-Fi. While many mathematical models have beenproposed to study the problem of the coexistence of LAAand Wi-Fi systems, few have tackled the problem of QoSprovisioning, and in particular analysed the behaviour of thevarious classes of priority available in Wi-Fi and LAA. Thispaper presents a new mathematical model to investigate theperformance of different priority classes in coexisting Wi-Fi andLAA networks. Using Discrete Time Markov Chains, we modelthe saturation throughput of all eight priority classes used byWi-Fi and LAA. The numerical results show that with the 3GPPproposed parameters, a fair coexistence between Wi-Fi and LAAcannot be achieved. Wi-Fi users in particular suffer a significantdegradation of their performance caused by the collision withLAA transmissions which has a longer duration compared toWi-Fi transmissions
    corecore