150 research outputs found

    Enhanced handover signaling through integrated MME-SDN controller solution

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The future wireless networks are expected to be extremely dense and heterogeneous, with the users experiencing multi-connectivity through the multiple available radio access technologies (RATs). These prevalent characteristics, along with the strict QoS requirements, renders the handover (HO) process optimization as a critical objective for future networks. Along side the evolving network characteristics and methodologies, an evolving network architecture needs to be considered as well. Such evolution should not only facilitate HO process enhancement, i.e., reduction in HO delay and signaling, but it should also allow for a smooth transition from current to future wireless networks. Hence, in this work we firstly present an evolutionary core network entity called the Integrated MME-SDN Controller and the associated network architecture. The proposed architecture provides a migratory path for the existing 3GPP cellular architectures towards the 5G networks. Next, we discuss the benefits and challenges of such an architectural approach, with one of the benefits being a manageable CAPEX for the network operators through its transitional nature. Subsequently, utilizing the aforementioned proposed architecture, we present the handover process enhancement for the current 3GPP defined HO processes. We quantify the improvements achieved in terms of latency, transmission and processing cost for the different 3GPP HO processes. We also show that the proposed HO mechanism leads to a significant reduction in latency and signaling for certain types of HOs which, as a consequence, will critically benefit any dense and heterogeneous wireless system, such as 5G.Peer ReviewedPostprint (author's final draft

    Future RAN architecture: SD-RAN through a general-purpose processing platform

    Get PDF
    In this article, we identify and study the potential of an integrated deployment solution for energy-efficient cellular networks combining the strengths of two very active current research themes: 1) software-defined radio access networks (SD-RANs) and 2) decoupled signaling and data transmissions, or beyond cellular green generation (BCG2) architecture, for enhanced energy efficiency. While SD-RAN envisions a decoupled centralized control plane and data-forwarding plane for flexible control, the BCG2 architecture calls for decoupling coverage from the capacity and coverage provided through an always-on low-power signaling node for a larger geographical area; the capacity is catered by various on-demand data nodes for maximum energy efficiency. In this article, we show that a combined approach that brings both specifications together can not only achieve greater benefits but also facilitate faster realization of both technologies. We propose the idea and design of a signaling controller that acts as a signaling node to provide always-on coverage, consuming low power, and at the same time host the control plane functions for the SDRAN through a general-purpose processing platform. The phantom cell concept is also a similar idea where a normal macrocell provides interference control to densely deployed small cells, although our initial results show that the integrated architecture has a much greater potential for energy savings than phantom cells

    Evolutionary 4G/5G network architecture assisted efficient handover signaling

    Get PDF
    Future wireless networks are expected to be ultra-dense and heterogeneous not just in terms of the number and type of base stations but also in terms of the number of users and the application types they access. Such a network architecture will require mobility management mechanisms that adapt rapidly to these highly dynamic network characteristics. In particular, the optimality of the handover signaling within these future network architectures will be extremely critical given their density and heterogeneity. In this paper, the optimality is relevant for both the total amount of signaling created and the total delay per handover process. In this paper, we first present a novel and optimized message mapping and signaling mechanism for the handover preparation and failure phases. We also develop a novel handover failure aware preparation signaling methodology, which accounts for the possibility of a handover failure and grants additional enhancements to the handover preparation and failure signaling phases. Through the analytical framework provided in this paper, we conduct studies to quantify the performance gains promised by the proposed mechanisms. These studies cover myriad handover scenarios as identified by 3GPP and use the statistics from cellular network operators and vendors. We then develop the idea and analytical framework for network wide analysis, in which the network wide processing cost and network occupation time for various handover failure rates are computed. Finally, we propose an evolutionary network architecture that facilitates the proposed signaling mechanism as well as assists operators in maintaining a manageable capital expenditure. It combines the current day and 3GPP proposed 5G network architecture with the software-defined networking approach. As a result, we argue that the proposed mechanisms are viable and outperform the legacy handover signaling mechanisms in terms of latency incurred, total network occupation time, number of messages generated, and total bytes transferred.Peer ReviewedPostprint (author's final draft

    Enhanced mobility management mechanisms for 5G networks

    Get PDF
    Many mechanisms that served the legacy networks till now, are being identified as being grossly sub-optimal for 5G networks. The reason being, the increased complexity of the 5G networks compared previous legacy systems. One such class of mechanisms, important for any wireless standard, is the Mobility Management (MM) mechanisms. MM mechanismsensure the seamless connectivity and continuity of service for a user when it moves away from the geographic location where it initially got attached to the network. In this thesis, we firstly present a detailed state of the art on MM mechanisms. Based on the 5G requirements as well as the initial discussions on Beyond 5G networks, we provision a gap analysis for the current technologies/solutions to satisfy the presented requirements. We also define the persistent challenges that exist concerning MM mechanisms for 5G and beyond networks. Based on these challenges, we define the potential solutions and a novel framework for the 5G and beyond MM mechanisms. This framework specifies a set of MM mechanisms at the access, core and the extreme edge network (users/devices) level, that will help to satisfy the requirements for the 5G and beyond MM mechanisms. Following this, we present an on demand MM service concept. Such an on-demand feature provisions the necessary reliability, scalability and flexibility to the MM mechanisms. It's objective is to ensure that appropriate resources and mobility contexts are defined for users who will have heterogeneous mobility profiles, versatile QoS requirements in a multi-RAT network. Next, in this thesis we tackle the problem of core network signaling that occurs during MM in 5G/4G networks. A novel handover signaling mechanism has been developed, which eliminates unnecessary handshakes during the handover preparation phase, while allowing the transition to future softwarized network architectures. We also provide a handover failure aware handover preparation phase signaling process. We then utilize operator data and a realistic network deployment to perform a comparative analysis of the proposed strategy and the 3GPP handover signaling strategy on a network wide deployment scenario. We show the benefits of our strategy in terms of latency of handover process, and the transmission and processing cost incurred. Lastly, a novel user association and resource allocation methodology, namely AURA-5G, has been proposed. AURA-5G addresses scenarios wherein applications with heterogeneous requirements, i.e., enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC), are present simultaneously. Consequently, a joint optimization process for performing the user association and resource allocation while being cognizant of heterogeneous application requirements, has been performed. We capture the peculiarities of this important mobility management process through the various constraints, such as backhaul requirements, dual connectivity options, available access resources, minimum rate requirements, etc., that we have imposed on a Mixed Integer Linear Program (MILP). The objective function of this established MILP problem is to maximize the total network throughput of the eMBB users, while satisfying the minimum requirements of the mMTC and eMBB users defined in a given scenario. Through numerical evaluations we show that our approach outperforms the baseline user association scenario significantly. Moreover, we have presented a system fairness analysis, as well as a novel fidelity and computational complexity analysis for the same, which express the utility of our methodology given the myriad network scenarios.Muchos mecanismos que sirvieron en las redes actuales, se están identificando como extremadamente subóptimos para las redes 5G. Esto es debido a la mayor complejidad de las redes 5G. Un tipo de mecanismo importante para cualquier estándar inalámbrico, consiste en el mecanismo de gestión de la movilidad (MM). Los mecanismos MM aseguran la conectividad sin interrupciones y la continuidad del servicio para un usuario cuando éste se aleja de la ubicación geográfica donde inicialmente se conectó a la red. En esta tesis, presentamos, en primer lugar, un estado del arte detallado de los mecanismos MM. Bas ándonos en los requisitos de 5G, así como en las discusiones iniciales sobre las redes Beyond 5G, proporcionamos un análisis de las tecnologías/soluciones actuales para satisfacer los requisitos presentados. También definimos los desafíos persistentes que existen con respecto a los mecanismos MM para redes 5G y Beyond 5G. En base a estos desafíos, definimos las posibles soluciones y un marco novedoso para los mecanismos 5G y Beyond 5G de MM. Este marco especifica un conjunto de mecanismos MM a nivel de red acceso, red del núcleo y extremo de la red (usuarios/dispositivos), que ayudarán a satisfacer los requisitos para los mecanismos MM 5G y posteriores. A continuación, presentamos el concepto de servicio bajo demanda MM. Tal característica proporciona la confiabilidad, escalabilidad y flexibilidad necesarias para los mecanismos MM. Su objetivo es garantizar que se definan los recursos y contextos de movilidad adecuados para los usuarios que tendrán perfiles de movilidad heterogéneos, y requisitos de QoS versátiles en una red multi-RAT. Más adelante, abordamos el problema de la señalización de la red troncal que ocurre durante la gestión de la movilidad en redes 5G/4G. Se ha desarrollado un nuevo mecanismo de señalización de handover, que elimina los intercambios de mensajes innecesarios durante la fase de preparación del handover, al tiempo que permite la transición a futuras arquitecturas de red softwarizada. Utilizamos los datos de operadores y consideramos un despliegue de red realista para realizar un análisis comparativo de la estrategia propuesta y la estrategia de señalización de 3GPP. Mostramos los beneficios de nuestra estrategia en términos de latencia del proceso de handover y los costes de transmisión y procesado. Por último, se ha propuesto una nueva asociación de usuarios y una metodología de asignación de recursos, i.e, AURA-5G. AURA-5G aborda escenarios en los que las aplicaciones con requisitos heterogéneos, i.e., enhanced Mobile Broadband (eMBB) y massive Machine Type Communications (mMTC), están presentes simultáneamente. En consecuencia, se ha llevado a cabo un proceso de optimización conjunta para realizar la asociación de usuarios y la asignación de recursos mientras se tienen en cuenta los requisitos de aplicaciónes heterogéneas. Capturamos las peculiaridades de este importante proceso de gestión de la movilidad a través de las diversas restricciones impuestas, como son los requisitos de backhaul, las opciones de conectividad dual, los recursos de la red de acceso disponibles, los requisitos de velocidad mínima, etc., que hemos introducido en un Mixed Integer Linear Program (MILP). La función objetivo de este problema MILP es maximizar el rendimiento total de la red de los usuarios de eMBB, y a la vez satisfacer los requisitos mínimos de los usuarios de mMTC y eMBB definidos en un escenario dado. A través de evaluaciones numéricas, mostramos que nuestro enfoque supera significativamente el escenario de asociación de usuarios de referencia. Además, hemos presentado un análisis de la justicia del sistema, así como un novedoso análisis de fidelidad y complejidad computacional para el mismo, que expresa la utilidad de nuestra metodología.Postprint (published version

    Enhanced mobility management mechanisms for 5G networks

    Get PDF
    Many mechanisms that served the legacy networks till now, are being identified as being grossly sub-optimal for 5G networks. The reason being, the increased complexity of the 5G networks compared previous legacy systems. One such class of mechanisms, important for any wireless standard, is the Mobility Management (MM) mechanisms. MM mechanismsensure the seamless connectivity and continuity of service for a user when it moves away from the geographic location where it initially got attached to the network. In this thesis, we firstly present a detailed state of the art on MM mechanisms. Based on the 5G requirements as well as the initial discussions on Beyond 5G networks, we provision a gap analysis for the current technologies/solutions to satisfy the presented requirements. We also define the persistent challenges that exist concerning MM mechanisms for 5G and beyond networks. Based on these challenges, we define the potential solutions and a novel framework for the 5G and beyond MM mechanisms. This framework specifies a set of MM mechanisms at the access, core and the extreme edge network (users/devices) level, that will help to satisfy the requirements for the 5G and beyond MM mechanisms. Following this, we present an on demand MM service concept. Such an on-demand feature provisions the necessary reliability, scalability and flexibility to the MM mechanisms. It's objective is to ensure that appropriate resources and mobility contexts are defined for users who will have heterogeneous mobility profiles, versatile QoS requirements in a multi-RAT network. Next, in this thesis we tackle the problem of core network signaling that occurs during MM in 5G/4G networks. A novel handover signaling mechanism has been developed, which eliminates unnecessary handshakes during the handover preparation phase, while allowing the transition to future softwarized network architectures. We also provide a handover failure aware handover preparation phase signaling process. We then utilize operator data and a realistic network deployment to perform a comparative analysis of the proposed strategy and the 3GPP handover signaling strategy on a network wide deployment scenario. We show the benefits of our strategy in terms of latency of handover process, and the transmission and processing cost incurred. Lastly, a novel user association and resource allocation methodology, namely AURA-5G, has been proposed. AURA-5G addresses scenarios wherein applications with heterogeneous requirements, i.e., enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC), are present simultaneously. Consequently, a joint optimization process for performing the user association and resource allocation while being cognizant of heterogeneous application requirements, has been performed. We capture the peculiarities of this important mobility management process through the various constraints, such as backhaul requirements, dual connectivity options, available access resources, minimum rate requirements, etc., that we have imposed on a Mixed Integer Linear Program (MILP). The objective function of this established MILP problem is to maximize the total network throughput of the eMBB users, while satisfying the minimum requirements of the mMTC and eMBB users defined in a given scenario. Through numerical evaluations we show that our approach outperforms the baseline user association scenario significantly. Moreover, we have presented a system fairness analysis, as well as a novel fidelity and computational complexity analysis for the same, which express the utility of our methodology given the myriad network scenarios.Muchos mecanismos que sirvieron en las redes actuales, se están identificando como extremadamente subóptimos para las redes 5G. Esto es debido a la mayor complejidad de las redes 5G. Un tipo de mecanismo importante para cualquier estándar inalámbrico, consiste en el mecanismo de gestión de la movilidad (MM). Los mecanismos MM aseguran la conectividad sin interrupciones y la continuidad del servicio para un usuario cuando éste se aleja de la ubicación geográfica donde inicialmente se conectó a la red. En esta tesis, presentamos, en primer lugar, un estado del arte detallado de los mecanismos MM. Bas ándonos en los requisitos de 5G, así como en las discusiones iniciales sobre las redes Beyond 5G, proporcionamos un análisis de las tecnologías/soluciones actuales para satisfacer los requisitos presentados. También definimos los desafíos persistentes que existen con respecto a los mecanismos MM para redes 5G y Beyond 5G. En base a estos desafíos, definimos las posibles soluciones y un marco novedoso para los mecanismos 5G y Beyond 5G de MM. Este marco especifica un conjunto de mecanismos MM a nivel de red acceso, red del núcleo y extremo de la red (usuarios/dispositivos), que ayudarán a satisfacer los requisitos para los mecanismos MM 5G y posteriores. A continuación, presentamos el concepto de servicio bajo demanda MM. Tal característica proporciona la confiabilidad, escalabilidad y flexibilidad necesarias para los mecanismos MM. Su objetivo es garantizar que se definan los recursos y contextos de movilidad adecuados para los usuarios que tendrán perfiles de movilidad heterogéneos, y requisitos de QoS versátiles en una red multi-RAT. Más adelante, abordamos el problema de la señalización de la red troncal que ocurre durante la gestión de la movilidad en redes 5G/4G. Se ha desarrollado un nuevo mecanismo de señalización de handover, que elimina los intercambios de mensajes innecesarios durante la fase de preparación del handover, al tiempo que permite la transición a futuras arquitecturas de red softwarizada. Utilizamos los datos de operadores y consideramos un despliegue de red realista para realizar un análisis comparativo de la estrategia propuesta y la estrategia de señalización de 3GPP. Mostramos los beneficios de nuestra estrategia en términos de latencia del proceso de handover y los costes de transmisión y procesado. Por último, se ha propuesto una nueva asociación de usuarios y una metodología de asignación de recursos, i.e, AURA-5G. AURA-5G aborda escenarios en los que las aplicaciones con requisitos heterogéneos, i.e., enhanced Mobile Broadband (eMBB) y massive Machine Type Communications (mMTC), están presentes simultáneamente. En consecuencia, se ha llevado a cabo un proceso de optimización conjunta para realizar la asociación de usuarios y la asignación de recursos mientras se tienen en cuenta los requisitos de aplicaciónes heterogéneas. Capturamos las peculiaridades de este importante proceso de gestión de la movilidad a través de las diversas restricciones impuestas, como son los requisitos de backhaul, las opciones de conectividad dual, los recursos de la red de acceso disponibles, los requisitos de velocidad mínima, etc., que hemos introducido en un Mixed Integer Linear Program (MILP). La función objetivo de este problema MILP es maximizar el rendimiento total de la red de los usuarios de eMBB, y a la vez satisfacer los requisitos mínimos de los usuarios de mMTC y eMBB definidos en un escenario dado. A través de evaluaciones numéricas, mostramos que nuestro enfoque supera significativamente el escenario de asociación de usuarios de referencia. Además, hemos presentado un análisis de la justicia del sistema, así como un novedoso análisis de fidelidad y complejidad computacional para el mismo, que expresa la utilidad de nuestra metodología

    An integration of slicing, NFV, and SDN for mobility management in corporate environments

    Get PDF
    Online access to information while on the move has conferred businesses with the capability to be constantly accessible and in operation, independently of geographical area or time zone. There are situations, however, that demand technical solutions for specific scenarios, such as controlled access to corporate-based content. Virtual Private Networks (VPNs) allow controlled remote access to con-tent, supporting scenarios such as teleworking. Nonetheless, such mechanisms are not commonly associated with the highly mobile users of today, which can traverse different types of access networks, while still keeping access to con-tent restricted to corporate network usage. In addition, as VPN mechanisms are disassociated from mobility procedures, service disruption can happen or specific mechanisms and clients can be required in end-user's equipment. This paper proposes a framework that leverages Network Slicing, enabled by Software Defined Networking and Network Function Virtualisation, to provide seamless and isolated access to corporate-based content while moving through heterogeneous networks. This solution allows Mobile Network Operators to dynamically instantiate isolated network slices for corporate users, and handover them between 3GPP and non-3GPP networks while users move away from the corporate network. In this way, they are able to keep access to corporate-based content in a transparent way, while maintaining access requirements for the servicebeing used. The framework was implemented and validated over an experimental testbed composed by mobile and Wi-Fi accesses, with results presenting improvements in terms of overhead signaling and data redirection without downtime nor stream reconnection.publishe

    Future RAN Architecture: SD-RAN Through a General-Purpose Processing Platform

    Full text link
    In this article, we identify and study the potential of an integrated deployment solution for energy-efficient cellular networks combining the strengths of two very active current research themes: 1) software-defined radio access networks (SD-RANs) and 2) decoupled signaling and data transmissions, or beyond cellular green generation (BCG2) architecture, for enhanced energy efficiency. While SD-RAN envisions a decoupled centralized control plane and data-forwarding plane for flexible control, the BCG2 architecture calls for decoupling coverage from the capacity and coverage provided through an always-on low-power signaling node for a larger geographical area; the capacity is catered by various on-demand data nodes for maximum energy efficiency. In this article, we show that a combined approach that brings both specifications together can not only achieve greater benefits but also facilitate faster realization of both technologies. We propose the idea and design of a signaling controller that acts as a signaling node to provide always-on coverage, consuming low power, and at the same time host the control plane functions for the SDRAN through a general-purpose processing platform. The phantom cell concept is also a similar idea where a normal macrocell provides interference control to densely deployed small cells, although our initial results show that the integrated architecture has a much greater potential for energy savings than phantom cells

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized
    corecore