683 research outputs found

    Solutions for IPv6-based mobility in the EU project MobyDick

    Get PDF
    Proceedings of the WTC 2002, 18th World Telecommunications Congress, Paris, France, 22 -27 September, 2002.Mobile Internet technology is moving towards a packet-based or, more precisely, IPv6-based network. Current solutions on Mobile IPv6 and other related QoS and AAA matters do not offer the security and quality users have come to take for granted. The EU IST project Moby Dick has taken on the challenge of providing a solution that integrates QoS, mobility and AAA in a heterogeneous access environment. This paper focuses on the mobility part of the project, describes and justifies the handover approach taken, shows how QoS-aware and secure handover is achieved, and introduces the project's paging concept. It shows that a transition to a fully integrated IP-RAN and IP-Backbone has become a distinct option for the future.Publicad

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    Smart handoff technique for internet of vehicles communication using dynamic edge-backup node

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/electronics9030524A vehicular adhoc network (VANET) recently emerged in the the Internet of Vehicles (IoV); it involves the computational processing of moving vehicles. Nowadays, IoV has turned into an interesting field of research as vehicles can be equipped with processors, sensors, and communication devices. IoV gives rise to handoff, which involves changing the connection points during the online communication session. This presents a major challenge for which many standardized solutions are recommended. Although there are various proposed techniques and methods to support seamless handover procedure in IoV, there are still some open research issues, such as unavoidable packet loss rate and latency. On the other hand, the emerged concept of edge mobile computing has gained crucial attention by researchers that could help in reducing computational complexities and decreasing communication delay. Hence, this paper specifically studies the handoff challenges in cluster based handoff using new concept of dynamic edge-backup node. The outcomes are evaluated and contrasted with the network mobility method, our proposed technique, and other cluster-based technologies. The results show that coherence in communication during the handoff method can be upgraded, enhanced, and improved utilizing the proposed technique.Published onlin

    A Survey on Proxy Mobile IPv6 Handover

    Full text link
    [EN] As wireless technologies have been improving in recent years, a mobility management mechanism is required to provide seamless and ubiquitous mobility for end users who are roaming among points of attachment in wireless networks. Thus, Mobile IPv6 was developed by the Internet Engineering Task Force (IETF) to support the mobility service. However, Mobile IPv6 is unable to fulfill the requirements of real-time applications, such as video streaming service and voice over IP service, due to its high handover (HO) latency. To address this problem, Proxy Mobile IPv6 (PMIPv6) has been introduced by the IETF. In PMIPv6, which is a network-based approach, the serving network controls mobility management on behalf of the mobile node (MN). Thus, the MN is not required to participate in any mobility-related signaling. However, the PMIPv6 still suffers from lengthy HO latency and packet loss during a HO. This paper explores an elaborated survey on the HO procedure of PMIPv6 protocols and proposed approaches accompanied by a discussion about their points of weakness.This work was supported in part by the University of Malaya under UMRG Grant (RG080/11ICT).Modares, H.; Moravejosharieh, A.; Lloret, J.; Salleh, R. (2016). A Survey on Proxy Mobile IPv6 Handover. IEEE Systems Journal. 10(1):208-217. https://doi.org/10.1109/JSYST.2013.2297705S20821710

    Enhancement of FMIPv6 by Utilising Concurent Binding Update Process

    Full text link
    The world is progressing toward the Mobile Internet Protocol Television (MIPTV) era where people are able to watch television while roaming. The MIPTV technology requires high bandwidth and low latency handover. This paper enhances the binding updates process in the Fast Handover Mobile IPv6 (FMIPv6) to improve its handover process performance in term of secureness and robustness, by implementing concurant binding update process thru the use of the International Mobile Subscriber Identifier (IMSI). Simulation results show that the proposed idea reduces the handover latency to about 63% compared to standard FMIPv6

    Performance analysis of BUNSD-LMA

    Get PDF
    The IETF is developed Network Mobility Basic Support (NEMO BSP) to support session continuity and reachability to the Mobile Network Nodes (MNNs) as one unit while they move. While NEMO move and attached to different networks, it needs to register the MNNs. This function of registration decreases the performance of NEMO. NEMO BSP suffers from some challenges. The most important of these challenges are route optimization, seamless mobility, handover latency and registration time. Binding Update No Sense Drop (BUNSD) Binding Cache Entry (BCE) in Local Mobility Anchor (LMA) is proposed to find a possible solution to MNNs. MNNs that are roaming in a Proxy Mobile IPv6 (PMIPv6) domain to perform seamless mobility while they are maintaining their session continuity through mobile router (MR). In this paper, BUNSD-LMA is analyzed mathematically with NEMO BS based on handover latency, total packet delivery delay cost, and throughput time during handoff. The analytical result shows that the BUNSD-LMA had better performance in term of handover, and registrations of MNNs. As a result the total packet loss is decreased and seamless mobility of MNNs enhanced compared to NEMO BS benchmarks. Keywords: NEMO, PMIPv6, BUNSD, MR, MAG, LM
    • …
    corecore