14,033 research outputs found

    Prevention of cyberattacks in WSN and packet drop by CI framework and information processing protocol using AI and Big Data

    Full text link
    As the reliance on wireless sensor networks (WSNs) rises in numerous sectors, cyberattack prevention and data transmission integrity become essential problems. This study provides a complete framework to handle these difficulties by integrating a cognitive intelligence (CI) framework, an information processing protocol, and sophisticated artificial intelligence (AI) and big data analytics approaches. The CI architecture is intended to improve WSN security by dynamically reacting to an evolving threat scenario. It employs artificial intelligence algorithms to continuously monitor and analyze network behavior, identifying and mitigating any intrusions in real time. Anomaly detection algorithms are also included in the framework to identify packet drop instances caused by attacks or network congestion. To support the CI architecture, an information processing protocol focusing on efficient and secure data transfer within the WSN is introduced. To protect data integrity and prevent unwanted access, this protocol includes encryption and authentication techniques. Furthermore, it enhances the routing process with the use of AI and big data approaches, providing reliable and timely packet delivery. Extensive simulations and tests are carried out to assess the efficiency of the suggested framework. The findings show that it is capable of detecting and preventing several forms of assaults, including as denial-of-service (DoS) attacks, node compromise, and data tampering. Furthermore, the framework is highly resilient to packet drop occurrences, which improves the WSN's overall reliability and performanc

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Sputter deposition on composites : interplay between film and substrate properties

    Get PDF

    Blockchain-Empowered Security Enhancement IoT Framework in Building Management System

    Get PDF
    Centralized architectures, like the cloud model, have their advantages, but they also come with drawbacks, such as higher upfront costs, longer deployment times, and a higher probability of catastrophic failure. Building Management Systems (BMS) is an application that can adopt Internet of Things (IoT) designs and services. However, implementing IoT in a highly modular environment with various moving parts and interdependencies between stakeholders can create security issues. Therefore, this paper proposes a system design using Blockchain technology as a means to protect and control the system, which includes the integration of IoT and BMS technologies. This paper has also included broad discussion on current Blockchain based IoT solution and its IoT limitations in Building Management Systems

    A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey

    Full text link
    The growing interest in the Metaverse has generated momentum for members of academia and industry to innovate toward realizing the Metaverse world. The Metaverse is a unique, continuous, and shared virtual world where humans embody a digital form within an online platform. Through a digital avatar, Metaverse users should have a perceptual presence within the environment and can interact and control the virtual world around them. Thus, a human-centric design is a crucial element of the Metaverse. The human users are not only the central entity but also the source of multi-sensory data that can be used to enrich the Metaverse ecosystem. In this survey, we study the potential applications of Brain-Computer Interface (BCI) technologies that can enhance the experience of Metaverse users. By directly communicating with the human brain, the most complex organ in the human body, BCI technologies hold the potential for the most intuitive human-machine system operating at the speed of thought. BCI technologies can enable various innovative applications for the Metaverse through this neural pathway, such as user cognitive state monitoring, digital avatar control, virtual interactions, and imagined speech communications. This survey first outlines the fundamental background of the Metaverse and BCI technologies. We then discuss the current challenges of the Metaverse that can potentially be addressed by BCI, such as motion sickness when users experience virtual environments or the negative emotional states of users in immersive virtual applications. After that, we propose and discuss a new research direction called Human Digital Twin, in which digital twins can create an intelligent and interactable avatar from the user's brain signals. We also present the challenges and potential solutions in synchronizing and communicating between virtual and physical entities in the Metaverse

    A Conceptual Framework for Designing Interactive Human-Centred Building Spaces to Enhance User Experience in Specific-Purpose Buildings

    Full text link
    Human/User interaction with buildings are mostly restricted to interacting with building automation systems through user-interfaces that mainly aim to improve energy efficiency of buildings and ensure comfort of occupants. This research builds on the existing theories of Human-Building Interaction (HBI) and proposes a novel conceptual framework for HBI that combines the concepts of Human-Computer Interaction (HCI) and Ambient Intelligence (AmI). The proposed framework aims to study the needs of occupants in specific-purpose buildings, which is currently undermined. Specifically, we explore the application of the proposed HBI framework to improve the learning experience of students in academic buildings. Focus groups and semi-structured interviews were conducted among students who are considered primary occupants of Goodwin Hall, a flagship smart engineering building at Virginia Tech. Qualitative coding and concept mapping were used to analyze the qualitative data and determine the impact of occupant-specific needs on the learning experience of students in academic buildings. The occupant-specific problem that was found to have the highest direct impact on learning experience was finding study space and highest indirect impact was Indoor Environment Quality (IEQ). We discuss new ideas for designing Intelligent User Interfaces (IUI), e.g. Augmented Reality (AR), increase the perceivable affordances for building occupants and considering a context-aware ubiquitous analytics-based strategy to provide services that are tailored to address the identified needs

    2023-2024 Boise State University Undergraduate Catalog

    Get PDF
    This catalog is primarily for and directed at students. However, it serves many audiences, such as high school counselors, academic advisors, and the public. In this catalog you will find an overview of Boise State University and information on admission, registration, grades, tuition and fees, financial aid, housing, student services, and other important policies and procedures. However, most of this catalog is devoted to describing the various programs and courses offered at Boise State

    Intelligent computing : the latest advances, challenges and future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors
    • …
    corecore