43,604 research outputs found

    Facet-Based Browsing in Video Retrieval: A Simulation-Based Evaluation

    Get PDF
    In this paper we introduce a novel interactive video retrieval approach which uses sub-needs of an information need for querying and organising the search process. The underlying assumption of this approach is that the search effectiveness will be enhanced when employed for interactive video retrieval. We explore the performance bounds of a faceted system by using the simulated user evaluation methodology on TRECVID data sets and also on the logs of a prior user experiment with the system. We discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. The facets are simulated by the use of clustering the video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness

    Simulated evaluation of faceted browsing based on feature selection

    Get PDF
    In this paper we explore the limitations of facet based browsing which uses sub-needs of an information need for querying and organising the search process in video retrieval. The underlying assumption of this approach is that the search effectiveness will be enhanced if such an approach is employed for interactive video retrieval using textual and visual features. We explore the performance bounds of a faceted system by carrying out a simulated user evaluation on TRECVid data sets, and also on the logs of a prior user experiment with the system. We first present a methodology to reduce the dimensionality of features by selecting the most important ones. Then, we discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. Facets created by users are simulated by clustering video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness

    Clustering of Primordial Black Holes. II. Evolution of Bound Systems

    Full text link
    Primordial Black Holes (PBHs) that form from the collapse of density perturbations are more clustered than the underlying density field. In a previous paper, we showed the constraints that this has on the prospects of PBH dark matter. In this paper we examine another consequence of this clustering: the formation of bound systems of PBHs in the early universe. These would hypothetically be the earliest gravitationally collapsed structures, forming when the universe is still radiation dominated. Depending upon the size and occupation of the clusters, PBH merging occurs before they would have otherwise evaporated due to Hawking evaporation.Comment: 23 pages, 1 figure. Submitted to PR

    Cosmological Parameters from Observations of Galaxy Clusters

    Full text link
    Studies of galaxy clusters have proved crucial in helping to establish the standard model of cosmology, with a universe dominated by dark matter and dark energy. A theoretical basis that describes clusters as massive, multi-component, quasi-equilibrium systems is growing in its capability to interpret multi-wavelength observations of expanding scope and sensitivity. We review current cosmological results, including contributions to fundamental physics, obtained from observations of galaxy clusters. These results are consistent with and complementary to those from other methods. We highlight several areas of opportunity for the next few years, and emphasize the need for accurate modeling of survey selection and sources of systematic error. Capitalizing on these opportunities will require a multi-wavelength approach and the application of rigorous statistical frameworks, utilizing the combined strengths of observers, simulators and theorists.Comment: 53 pages, 21 figures. To appear in Annual Review of Astronomy & Astrophysic

    Voronoi Tessellations and the Cosmic Web: Spatial Patterns and Clustering across the Universe

    Full text link
    The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural asymptotic result of an evolution in which low-density expanding void regions dictate the spatial organization of the Megaparsec Universe, while matter assembles in high-density filamentary and wall-like interstices between the voids. We describe the results of ongoing investigations of a variety of aspects of cosmologically relevant spatial distributions and statistics within the framework of Voronoi tessellations. Particularly enticing is the finding of a profound scaling of both clustering strength and clustering extent for the distribution of tessellation nodes, suggestive for the clustering properties of galaxy clusters. Cellular patterns may be the source of an intrinsic ``geometrically biased'' clustering.Comment: 10 pages, 9 figures, accepted for publication as long paper in proceedings Fourth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), ed. C. Gold, IEEE Computer Society, July 2007. For high-res version see http://www.astro.rug.nl/~weygaert/tim1publication/vorwey.isvd07.pd

    The Dark Energy Survey

    Get PDF
    We describe the Dark Energy Survey (DES), a proposed optical-near infrared survey of 5000 sq. deg of the South Galactic Cap to ~24th magnitude in SDSS griz, that would use a new 3 sq. deg CCD camera to be mounted on the Blanco 4-m telescope at Cerro Telolo Inter-American Observatory (CTIO). The survey data will allow us to measure the dark energy and dark matter densities and the dark energy equation of state through four independent methods: galaxy clusters, weak gravitational lensing tomography, galaxy angular clustering, and supernova distances. These methods are doubly complementary: they constrain different combinations of cosmological model parameters and are subject to different systematic errors. By deriving the four sets of measurements from the same data set with a common analysis framework, we will obtain important cross checks of the systematic errors and thereby make a substantial and robust advance in the precision of dark energy measurements.Comment: White Paper submitted to the Dark Energy Task Force, 42 page

    Revealing modified gravity signal in matter and halo hierarchical clustering

    Get PDF
    We use a set of N-body simulations employing a modified gravity (MG) model with Vainshtein screening to study matter and halo hierarchical clustering. As test-case scenarios we consider two normal branch Dvali-Gabadadze-Porrati (nDGP) gravity models with mild and strong growth rate enhancement. We study higher-order correlation functions ξn(R)\xi_n(R) up to n=9n=9 and associated hierarchical amplitudes Sn(R)≡ξn(R)/σ(R)2n−2S_n(R)\equiv\xi_n(R)/\sigma(R)^{2n-2}. We find that the matter PDFs are strongly affected by the fifth-force on scales up to 50h−150h^{-1}Mpc, and the deviations from GR are maximised at z=0z=0. For reduced cumulants SnS_n, we find that at small scales R≤10h−1R\leq10h^{-1}Mpc the MG is characterised by lower values, with the deviation growing from 7%7\% in the reduced skewness up to even 40%40\% in S5S_5. To study the halo clustering we use a simple abundance matching and divide haloes into thee fixed number density samples. The halo two-point functions are weakly affected, with a relative boost of the order of a few percent appearing only at the smallest pair separations (r≤5h−1r\leq 5h^{-1}Mpc). In contrast, we find a strong MG signal in Sn(R)S_n(R)'s, which are enhanced compared to GR. The strong model exhibits a >3σ>3\sigma level signal at various scales for all halo samples and in all cumulants. In this context, we find that the reduced kurtosis to be an especially promising cosmological probe of MG. Even the mild nDGP model leaves a 3σ3\sigma imprint at small scales R≤3h−1R\leq3h^{-1}Mpc, while the stronger model deviates from a GR-signature at nearly all scales with a significance of >5σ>5\sigma. Since the signal is persistent in all halo samples and over a range of scales, we advocate that the reduced kurtosis estimated from galaxy catalogues can potentially constitute a strong MG-model discriminatory as well as GR self-consistency test.Comment: 19 pages, 11 figures, comments are welcom

    Cosmological constraints on Lorentz violating dark energy

    Full text link
    The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ThetaCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from LambdaCDM. The differences appear at the level of perturbations. We show that in ThetaCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code CLASS. We then use the parameter inference code Monte Python to confront ThetaCDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from LambdaCDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level 1.8%.Comment: 17 pages, 5 figure
    • …
    corecore