90 research outputs found

    Overcurrent relays coordination optimisation methods in distribution systems for microgrids: a review

    Get PDF
    Electric power networks connected with multiple distributed generations (microgrids) require adequate protection coordination. In this paper, the overcurrent relay coordination concept in distribution system has been presented with details. In this available literature, the previous works on optimisation methods utilised for the coordination of over current relays; classification has been made based on the optimisation techniques, non-standard characteristics, new constraints that have been proposed for optimal coordination and dual setting protection schemes. Then a comprehensive review has been done on optimisation techniques including the conventional methods, heuristic and hybrid methods and the relevant issues have been addressed

    Real time coordination of overcurrent relays by means of optimization algorithm.

    Get PDF
    Protection is widely used in all different voltage levels of the electrical power system: generation, transmission, sub-transmission and distribution etc. An overcurrent relay is a protection that is widely implemented in the sub-transmission and distribution systems due to its competing cost. Depending on the operative conditions and fault locations in a mesh system, the load or fault currents can circle in or out of the overcurrent relay's protective zone. Hence directional overcurrent relays are used to discriminate whether the fault is located in or out of the protective zone. The propose of coordinating the overcurrent relays is to encounter settings that minimize the operation time for faults within the protective zone and at the same time offering pre-specified timed backup for relays that are in the adjacent zones. So the maximum fault current that the relay detects in its protective zone must be greater than the fault currents in the adjacent zones. The above condition is met in radial systems, one source mesh systems and two source mesh systems where the sources are located symmetrically at the end. But the above condition is not always met in the multi-source mesh systems due to the numerous operative configurations. Since the systems cannot operate in the absence of protection, other protection principles must be used, i.e. impedance relay. It is then said that for certain operative configurations of mesh system, overcurrent protection principle is out of range or in other words reaches the limit of its protection principle [1]

    Optimal Protection Coordination of Active Distribution Networks Powered by Synchronverters

    Get PDF
    The integration of distributed generators (DGs) into distribution networks leads to the emergence of active distribution networks (ADNs). These networks have advantages, such as deferring the network upgrade, lower power losses, reduced power generation cost, and lower greenhouse gas emission, DGs are classified due to their interface with the network as inverter-interfaced or synchronous-interfaced. However, DGs integration results in bidirectional power flow, higher fault current levels, deterioration of the protection coordination of the directional overcurrent relays (DOCRs) which are used in ADNs, reduced system stability due to the inverters’ lack of damping. The stability can be enhanced by controlling the inverters to behave as synchronous generators, which are known as synchronverters. In this thesis, a two-stage optimal protection coordination (OPC) scheme is proposed to guarantee reliable protection of ADNs while protecting synchronverters from overcurrent using virtual impedance fault current limiters (VI-FCLs). VI-FCLs provide a cost-effective way to protect synchronverters from overcurrent. The first stage integrates the fault current calculations of synchronverters in the fault analysis to find the parameters of VI-FCLs used to limit the synchronverter’s fault current. In the second stage, the fault current calculations, along with the designed VI-FCLs from the first stage, are employed to determine the optimal relays’ settings to minimize the total operating times for all the DOCR. It is found that fixed VI-FCLs can limit synchronverters’ fault currents but may make the OPC problem infeasible to solve. Thus, an adaptive VI-FCL is proposed to ensure a feasible OPC under various fault conditions, i.e., locations and resistances

    Computational Intelligence Application in Electrical Engineering

    Get PDF
    The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering

    Sag effects on protection system in distributed generation grids

    Get PDF
    Distributed Generators (DGs) are sensible to voltage sags, so the protection devices must trip fast to disconnect the faulted part of the grid. The DG disconnection will not be desirable in the near future with a large penetration, so it will be necessary to lay down new requirements that should be based on avoiding unnecessary disconnections. Therefore, to prevent unnecessary tripping when inverter-based DGs are connected to the Medium Voltage (MV) grid, reliable and effective protection strategies need to be developed, considering the limited short-circuit current contribution of DG. The initial goal of this study is to employ different possible control strategies for a grid-connected inverter according to the Spanish grid code and to analyze the output voltage behavior during symmetrical and unsymmetrical voltage sags. The analytical development of the proposed strategies shows the impacts of the sag on currents, voltages, active and reactive powers. Another goal of this research is to propose a protection strategy based on Artificial Intelligence for a radial or ring distribution system with high DG penetration. The protection strategy is based on three different algorithms to develop a more secure, redundant, and reliable protection system to ensure supply continuity during disturbances in ring and radial grids without compromising system stability. In order to classify, locate and distinguish between permanent or transient faults, new protection algorithms based on artificial intelligence are proposed in this research, allowing network availability improvement disconnecting only the faulted part of the system. This research introduces the innovative use of directional relay based on a communication system and Artificial Neural Network (ANN). The first algorithm, Centralize algorithm (CE), collects the data from all the PDs in the grid in the centralized controller. This algorithm detects the power flow direction and calculates the positive-sequence current of all the PDs in the grid. Significant benefits of this system are that it consolidates the entire systems security into a single device, which can facilitate system security control. However, the CE will not pinpoint the exact location of the fault if there is any loss of information due to poor communication. Therefore, the systems redundancy can be improved by cooperating with a second algorithm, the Zone algorithm (ZO). ZO algorithm is based on zone control using peer-to-peer connectivity in the same line. The faulty line in that zone may be identified by combining the two PDs data on the same line. The most relevant advantage of this algorithm is its flexibility to adapt to any grid modification or disturbance, even if they are just temporary, unlike the CE, which is fixed to the existing grid configuration. The third protection algorithm, Local algorithm (LO), has been proposed without depending on the communication between the PDs; then, the protection system can work properly in case of a total loss of communication. Each PD should be able to detect if the fault is located in the protected line or another line by using only the local information of the PD. According to the type of fault and based on local measurements at each PD of abc voltages and currents, different algorithms will be applied depending on the calculation of the sequence components. The main advantage of this algorithm is the separate decision of each PD, and avoiding communication problems. In case of radial grids, both mechanical breakers and Solid State Relays (SSRs) are used to verify the protection strategies, and in the case of ring grids, mechanical breakers are used, due to the limitations in required voltage difference of SSR. The proposed protection algorithms are compared with conventional protections (Overcurrent and Differential) protections to validate the contribution of the proposed algorithms, especially in reconfigurable smart grids.El objetivo inicial de este estudio es emplear diferentes estrategias de control posibles para un inversor conectado a la red segun el código de red español y analizar el comportamiento de la tensión de salida durante caídas de tensión simétricas y asimétricas. El desarrollo analítico de las estrategias propuestas muestra los impactos de los huecos de tensión en las corrientes, tensiones, potencias activas y reactivas. Otro objetivo de esta investigación es proponer una estrategia de protecclón basada en lnteligencia Artificial para una red del Sistema de Distribución, radial o en anillo, con elevada penetración de Generación Distribuida. La estrategia de protección se basa en tres algoritmos diferentes para desarrollar un sistema de protección más seguro, redundante, y fiable, que asegure la continuidad de suministro durante perturbaciones en redes radiales o en anillo sin comprometer la estabilidad del sistema. Para clasificar, localizar y distinguir entre faltas permanentes o transitorias, se proponen en este trabajo nuevos algoritmos de protección basados en inteligencia artificial, permitiendo la mejora de la disponibilidad de la red, al desconectar sólo la parte del sistema en falta. Esta investigación introduce la innovación del uso del rele direccional basado en un sistema de comunicación y Redes Neuronales Artificiales (ANN). El primer algoritmo, Algoritmo Central (CE), recibe los datos de todos los PDs de la red en un control central. Este algoritmo detecta la dirección de flujo de cargas y calcula la corriente de secuencia positiva de todos los PDs de la red. El entrenamiento de ANNs incluye variaciones en la corriente de cortocircuito y la dirección del flujo de potencia en cada PD. Los beneficios mas significativos de este sistema son que concentra la seguridad total del sistema en un único dispositivo, lo que puede facilitar el control de la seguridad del sistema. Sin embargo, el CE no determinara con precisión la localización exacta de la falta si hay alguna perdida de información debida a una pobre comunicación. Por lo tanto, la redundancia del sistema se puede mejorar cooperando con un segundo algoritmo, el algoritmo de Zona (ZO). El algoritmo ZO se basa en un control de zona usando la conectividad entre dispositivos de protección de una misma línea. La línea en falta en esa zona puede identificarse combinando los datos de los dos PDs de la misma línea.. La ventaja mas relevante de este algoritmo es su flexibilidad para adaptarse a cualquier modificación de la red o perturbación, incluso si sólo son temporales, a diferencia del CE, que se ha adaptado para la configuración de la red existente. El tercer algoritmo de protección, algoritmo Local (LO), ha sido propuesto sin dependencia de la comunicación entre PDs; por lo tanto, el sistema de protección puede operar correctamente en el caso de una pérdida total de comunicación. Cada PD debe poder detectar si la falta esta ubicada en la línea protegida o en otra línea, utilizando sóIo la información local del PD. Según el tipo de falta, y en base a medidas locales en cada PD, de tensiones y corrientes abc, se aplican diferentes algoritmos en función del cálculo de las componentes simétricas. La principal ventaja de este algoritmo es la actuación por separado de cada PD, evitando los problemas de comunicación. En el caso de las redes radiales, se utilizan tanto interruptores mecánicos como réles de estado sóIido (SSR) para verificar las estrategias de protección, y en el caso de las redes en anillo se utilizan interruptores mecánicos, debido a las limitaciones de tensión para su conexión. Los algoritmos de protección propuestos se comparan con protecciones convencionales (Sobrecorriente y Diferencial) para validar la contribución de los algoritmos propuestos, especialmente en redes inteligentes reconfigurables.Postprint (published version

    Optimizing the protection of an auto-recloser in a DG integrated distribution network.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.The integration of distributed generation into distribution networks is growing as most of the distributed generators have a sustainable power supply and can be used to improve the voltage profile. However, the type of a distributed generator and location in the distribution network can determine how a voltage profile behaves in a distribution feeder. They also contribute fault current in a new or same direction as the fault current from the utility. With this change in the fault current, the existing protection scheme may maloperate since the protection scheme was designed for fault current from the utility generator. One of the protection devices that can mal-operate is the auto-recloser. This is a device used for the self-remediation of the distribution network when there is a temporary fault. The IEEE and IEC standard for the international use of auto-reclosers in voltages between 1000 V and 38 kV states that the minimum tripping current shall be stated by the manufacturer with a tolerance not exceeding +/- 10% or 3 A, and the preferred operating sequence for auto-reclosers shall be; open – time delay of 0.5 seconds - close and open-second time delay 2 seconds - close and open - third-time delay of 5 seconds - close and open then lock out. However, these parameters can be violated when distributed generators are introduced into the distribution network. The change in the fault current may vary the operating time of the auto-recloser and it may not operate in this manner. The inverse time-current characteristics of the auto-recloser relay cause this. However, the operating time problem can be optimized. The inverse time-current characteristic of the auto-recloser relay can be used to formulate the auto-recloser operating time problem. The settings can be optimized to reduce the time and mitigate mal-operations such as protection blinding, fuse and auto-recloser losing coordination, and sympathetic tripping. To optimize the settings, optimization algorithms can be applied. In this research, the development of a single-shot auto-recloser is conducted. The IEEE 13-node and 34- node radial distribution feeders are used as a passive distribution network. The Wind Turbine and Solar Photovoltaic systems are distributed generators. MATLAB/Simulink is used for simulations, and the results obtained show that the integration of the distributed generators into a passive distribution network causes mal-operations in the auto-recloser when there is a fault. The factors that contribute to these mal-operations is the fault location, fault type, distributed generator type, distributed generator penetration and location. However, the auto-recloser shows improvement when the settings are optimized in these conditions

    Cyber-Based Contingency Analysis and Insurance Implications of Power Grid

    Get PDF
    Cybersecurity for power communication infrastructure is a serious subject that has been discussed for a decade since the first North American Electric Reliability Corporation (NERC) critical infrastructure protection (CIP) initiative in 2006. Its credibility on plausibility has been evidenced by attack events in the recent past. Although this is a very high impact, rare probability event, the establishment of quantitative measures would help asset owners in making a series of investment decisions. First, this dissertation tackles attackers\u27 strategies based on the current communication architecture between remote IP-based (unmanned) power substations and energy control centers. Hypothetically, the identification of intrusion paths will lead to the worst-case scenarios that the attackers could do harm to the grid, e.g., how this switching attack may perturb to future cascading outages within a control area when an IP-based substation is compromised. Systematic approaches are proposed in this dissertation on how to systematically determine pivotal substations and how investment can be prioritized to maintain and appropriate a reasonable investment in protecting their existing cyberinfrastructure. More specifically, the second essay of this dissertation focuses on digital protecting relaying, which could have similar detrimental effects on the overall grid\u27s stability. The R-k contingency analyses are proposed to verify with steady-state and dynamic simulations to ensure consistencies of simulation outcome in the proposed modeling in a power system. This is under the assumption that attackers are able to enumerate all electronic devices and computers within a compromised substation network. The essay also assists stakeholders (the defenders) in planning out exhaustively to identify the critical digital relays to be deployed in substations. The systematic methods are the combinatorial evaluation to incorporate the simulated statistics in the proposed metrics that are used based on the physics and simulation studies using existing power system tools. Finally, a risk transfer mechanism of cyber insurance against disruptive switching attacks is studied comprehensively based on the aforementioned two attackers\u27 tactics. The evaluation hypothetically assesses the occurrence of anomalies and how these footprints of attackers can lead to a potential cascading blackout as well as to restore the power back to normal stage. The research proposes a framework of cyber insurance premium calculation based on the ruin probability theory, by modeling potential electronic intrusion and its direct impacts. This preliminary actuarial model can further improve the security of the protective parameters of the critical infrastructure via incentivizing investment in security technologies
    • …
    corecore