402 research outputs found

    Biogeography-based learning particle swarm optimization

    Get PDF

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    Orthogonal learning particle swarm optimization

    Get PDF
    Particle swarm optimization (PSO) relies on its learning strategy to guide its search direction. Traditionally, each particle utilizes its historical best experience and its neighborhood’s best experience through linear summation. Such a learning strategy is easy to use, but is inefficient when searching in complex problem spaces. Hence, designing learning strategies that can utilize previous search information (experience) more efficiently has become one of the most salient and active PSO research topics. In this paper, we proposes an orthogonal learning (OL) strategy for PSO to discover more useful information that lies in the above two experiences via orthogonal experimental design. We name this PSO as orthogonal learning particle swarm optimization (OLPSO). The OL strategy can guide particles to fly in better directions by constructing a much promising and efficient exemplar. The OL strategy can be applied to PSO with any topological structure. In this paper, it is applied to both global and local versions of PSO, yielding the OLPSO-G and OLPSOL algorithms, respectively. This new learning strategy and the new algorithms are tested on a set of 16 benchmark functions, and are compared with other PSO algorithms and some state of the art evolutionary algorithms. The experimental results illustrate the effectiveness and efficiency of the proposed learning strategy and algorithms. The comparisons show that OLPSO significantly improves the performance of PSO, offering faster global convergence, higher solution quality, and stronger robustness

    Feature selection using enhanced particle swarm optimisation for classification models.

    Get PDF
    In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake feature selection tasks. The aim is to overcome two major shortcomings of the original PSO model, i.e., premature convergence and weak exploitation around the near optimal solutions. The first proposed PSO variant incorporates four key operations, including a modified PSO operation with rectified personal and global best signals, spiral search based local exploitation, Gaussian distribution-based swarm leader enhancement, and mirroring and mutation operations for worst solution improvement. The second proposed PSO model enhances the first one through four new strategies, i.e., an adaptive exemplar breeding mechanism incorporating multiple optimal signals, nonlinear function oriented search coefficients, exponential and scattering schemes for swarm leader, and worst solution enhancement, respectively. In comparison with a set of 15 classical and advanced search methods, the proposed models illustrate statistical superiority for discriminative feature selection for a total of 13 data sets

    Incorporating Surprisingly Popular Algorithm and Euclidean Distance-based Adaptive Topology into PSO

    Full text link
    While many Particle Swarm Optimization (PSO) algorithms only use fitness to assess the performance of particles, in this work, we adopt Surprisingly Popular Algorithm (SPA) as a complementary metric in addition to fitness. Consequently, particles that are not widely known also have the opportunity to be selected as the learning exemplars. In addition, we propose a Euclidean distance-based adaptive topology to cooperate with SPA, where each particle only connects to k number of particles with the shortest Euclidean distance during each iteration. We also introduce the adaptive topology into heterogeneous populations to better solve large-scale problems. Specifically, the exploration sub-population better preserves the diversity of the population while the exploitation sub-population achieves fast convergence. Therefore, large-scale problems can be solved in a collaborative manner to elevate the overall performance. To evaluate the performance of our method, we conduct extensive experiments on various optimization problems, including three benchmark suites and two real-world optimization problems. The results demonstrate that our Euclidean distance-based adaptive topology outperforms the other widely adopted topologies and further suggest that our method performs significantly better than state-of-the-art PSO variants on small, medium, and large-scale problems

    Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation.

    Get PDF
    In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorithms are required to be reliable, robust, and accurate for clinical applications which can be difficult to achieve for some single deep learning methods. In this study, we introduce an ensemble of classifiers for semantic segmentation of medical images. The ensemble of classifiers here is a set of various deep learning-based classifiers, aiming to achieve better performance than using a single classifier. We propose a weighted ensemble method in which the weighted sum of segmentation outputs by classifiers is used to choose the final segmentation decision. We use a swarm intelligence algorithm namely Comprehensive Learning Particle Swarm Optimization to optimize the combining weights. Dice coefficient, a popular performance metric for image segmentation, is used as the fitness criteria. Experiments conducted on some medical datasets of the CAMUS competition on cardiographic image segmentation show that our method achieves better results than both the constituent segmentation models and the reported model of the CAMUS competition

    Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO

    Get PDF
    A global parameter estimation method for a PMSM drive system is proposed, where the electrical parameters, mechanical parameters and voltage-source-inverter (VSI) nonlinearity are regarded as a whole and parameter estimation is formulated as a single parameter optimization model. A dynamic learning estimator is proposed for tracking the electrical parameters, mechanical parameters and VSI of PMSM drive by using dynamic self learning particle swarm optimization (DSLPSO). In DSLPSO, a novel movement modification equation with dynamic exemplar learning strategy is designed to ensure its diversity and achieve a reasonable tradeoff between the exploitation and exploration during the search process. Moreover, a nonlinear multi-scale based interactive learning operator is introduced for accelerating the convergence speed of the Pbest particles; meanwhile a dynamic opposition-based learning (OBL) strategy is designed to facilitate the gBest particle to explore a potentially better region. The proposed algorithm is applied to parameter estimation for a PMSM drive system. The results show that the proposed method has better performance in tracking the variation of electrical parameters, and estimating the immeasurable mechanical parameters and the VSI disturbance voltage simultaneously

    Introducing languid particle dynamics to a selection of PSO variants

    Full text link
    Previous research showed that conditioning a PSO agent's movement based on its personal fitness improvement enhances the standard PSO method. In this article, languid particle dynamics (LPD) technique is used on five adequate and widely used PSO variants. Five unmodified PSO variants were tested against their LPD-implemented counterparts on three search space dimensionalities (10, 20, and 50 dimensions) and 30 test functions of the CEC 2014 benchmark test. In the preliminary phase of the testing four of the five tested PSO variants showed improvement in accuracy. The worst and best-achieving variants from preliminary test went through detailed investigation on 220 and 770 combinations of method parameters, where both variants showed overall gains in accuracy when enhanced with LPD. Finally, the results obtained with best achieving PSO parameters were subject to statistical analysis which showed that the two variants give statistically significant improvements in accuracy for 13-50% of the test functions.Comment: 13 pages, 10 tables, 1 figure. Egyptian Informatics Journal, 201

    A self-learning particle swarm optimizer for global optimization problems

    Get PDF
    Copyright @ 2011 IEEE. All Rights Reserved. This article was made available through the Brunel Open Access Publishing Fund.Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grants EP/E060722/1 and EP/E060722/2
    corecore