4,879 research outputs found

    Adaptive fuzzy system for 3-D vision

    Get PDF
    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller

    A Centroid Model for the Depth Assessment of Images using Rough Fuzzy Set Techniques

    Full text link

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    Interval Valued Data Enhanced Fuzzy Cognitive Map: Towards an Approach for Autism Deduction in Toddlers

    Get PDF

    Fuzzy Cognitive Maps with Type 2 Fuzzy Sets

    Get PDF

    Defuzzification of the Discretised Generalised Type-2 Fuzzy Set: Experimental Evaluation

    Get PDF
    CCI - Centre for Computational Intelligence NOTICE: this is the author’s version of a work that was accepted for publication in Information Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version can be found by following the DOIThe work reported in this paper addresses the challenge of the efficient and accurate defuzzification of discretised generalised type-2 fuzzy sets as created by the inference stage of a Mamdani Fuzzy Inferencing System. The exhaustive method of defuzzification for type-2 fuzzy sets is extremely slow, owing to its enormous computational complexity. Several approximate methods have been devised in response to this defuzzification bottleneck. In this paper we begin by surveying the main alternative strategies for defuzzifying a generalised type-2 fuzzy set: (1) Vertical Slice Centroid Type-Reduction; (2) the sampling method; (3) the elite sampling method; and (4) the α\alpha-planes method. We then evaluate the different methods experimentally for accuracy and efficiency. For accuracy the exhaustive method is used as the standard. The test results are analysed statistically by means of the Wilcoxon Nonparametric Test and the elite sampling method shown to be the most accurate. In regards to efficiency, Vertical Slice Centroid Type-Reduction is demonstrated to be the fastest technique
    • …
    corecore