52 research outputs found

    Towards Modular and Flexible Access Control on Smart Mobile Devices

    Get PDF
    Smart mobile devices, such as smartphones and tablets, have become an integral part of our daily personal and professional lives. These devices are connected to a wide variety of Internet services and host a vast amount of applications, which access, store and process security- and privacy-sensitive data. A rich set of sensors, ranging from microphones and cameras to location and acceleration sensors, allows these applications and their back end services to reason about user behavior. Further, enterprise administrators integrate smart mobile devices into their IT infrastructures to enable comfortable work on the go. Unsurprisingly, this abundance of available high-quality information has made smart mobile devices an interesting target for attackers, and the number of malicious and privacy-intrusive applications has steadily been rising. Detection and mitigation of such malicious behavior are in focus of mobile security research today. In particular, the Android operating system has received special attention by both academia and industry due to its popularity and open-source character. Related work has scrutinized its security architecture, analyzed attack vectors and vulnerabilities and proposed a wide variety of security extensions. While these extensions have diverse goals, many of them constitute modifications of the Android operating system and extend its default permission-based access control model. However, they are not generic and only address specific security and privacy concerns. The goal of this dissertation is to provide generic and extensible system-centric access control architectures, which can serve as a solid foundation for the instantiation of use-case specific security extensions. In doing so, we enable security researchers, enterprise administrators and end users to design, deploy and distribute security extensions without further modification of the underlying operating system. To achieve this goal, we first analyze the mobile device ecosystem and discuss how Android's security architecture aims to address its inherent threats. We proceed to survey related work on Android security, focusing on system-centric security extensions, and derive a set of generic requirements for extensible access control architectures targeting smart mobile devices. We then present two extensible access control architectures, which address these requirements by providing policy-based and programmable interfaces for the instantiation of use-case specific security solutions. By implementing a set of practical use-cases, ranging from context-aware access control, dynamic application behavior analysis to isolation of security domains we demonstrate the advantages of system-centric access control architectures over application-layer approaches. Finally, we conclude this dissertation by discussing an alternative approach, which is based on application-layer deputies and can be deployed whenever practical limitations prohibit the deployment of system-centric solutions

    Intrusion Detection for Cyber-Physical Attacks in Cyber-Manufacturing System

    Get PDF
    In the vision of Cyber-Manufacturing System (CMS) , the physical components such as products, machines, and tools are connected, identifiable and can communicate via the industrial network and the Internet. This integration of connectivity enables manufacturing systems access to computational resources, such as cloud computing, digital twin, and blockchain. The connected manufacturing systems are expected to be more efficient, sustainable and cost-effective. However, the extensive connectivity also increases the vulnerability of physical components. The attack surface of a connected manufacturing environment is greatly enlarged. Machines, products and tools could be targeted by cyber-physical attacks via the network. Among many emerging security concerns, this research focuses on the intrusion detection of cyber-physical attacks. The Intrusion Detection System (IDS) is used to monitor cyber-attacks in the computer security domain. For cyber-physical attacks, however, there is limited work. Currently, the IDS cannot effectively address cyber-physical attacks in manufacturing system: (i) the IDS takes time to reveal true alarms, sometimes over months; (ii) manufacturing production life-cycle is shorter than the detection period, which can cause physical consequences such as defective products and equipment damage; (iii) the increasing complexity of network will also make the detection period even longer. This gap leaves the cyber-physical attacks in manufacturing to cause issues like over-wearing, breakage, defects or any other changes that the original design didn’t intend. A review on the history of cyber-physical attacks, and available detection methods are presented. The detection methods are reviewed in terms of intrusion detection algorithms, and alert correlation methods. The attacks are further broken down into a taxonomy covering four dimensions with over thirty attack scenarios to comprehensively study and simulate cyber-physical attacks. A new intrusion detection and correlation method was proposed to address the cyber-physical attacks in CMS. The detection method incorporates IDS software in cyber domain and machine learning analysis in physical domain. The correlation relies on a new similarity-based cyber-physical alert correlation method. Four experimental case studies were used to validate the proposed method. Each case study focused on different aspects of correlation method performance. The experiments were conducted on a security-oriented manufacturing testbed established for this research at Syracuse University. The results showed the proposed intrusion detection and alert correlation method can effectively disclose unknown attack, known attack and attack interference that causes false alarms. In case study one, the alarm reduction rate reached 99.1%, with improvement of detection accuracy from 49.6% to 100%. The case studies also proved the proposed method can mitigate false alarms, detect attacks on multiple machines, and attacks from the supply chain. This work contributes to the security domain in cyber-physical manufacturing systems, with the focus on intrusion detection. The dataset collected during the experiments has been shared with the research community. The alert correlation methodology also contributes to cyber-physical systems, such as smart grid and connected vehicles, which requires enhanced security protection in today’s connected world

    SYSTEMATIC DISCOVERY OF ANDROID CUSTOMIZATION HAZARDS

    Get PDF
    The open nature of Android ecosystem has naturally laid the foundation for a highly fragmented operating system. In fact, the official AOSP versions have been aggressively customized into thousands of system images by everyone in the customization chain, such as device manufacturers, vendors, carriers, etc. If not well thought-out, the customization process could result in serious security problems. This dissertation performs a systematic investigation of Android customization’ inconsistencies with regards to security aspects at various Android layers. It brings to light new vulnerabilities, never investigated before, caused by the under-regulated and complex Android customization. It first describes a novel vulnerability Hare and proves that it is security critical and extensive affecting devices from major vendors. A new tool is proposed to detect the Hare problem and to protect affected devices. This dissertation further discovers security configuration changes through a systematic differential analysis among custom devices from different vendors and demonstrates that they could lead to severe vulnerabilities if introduced unintentionally

    Techniques for advanced android malware triage

    Get PDF
    Mención Internacional en el título de doctorAndroid is the leading operating system in smartphones with a big difference. Statistics show that 88% of all smartphones sold to end users in the second quarter of 2018 were phones with the Android OS. Regardless of the operating systems which are running on smartphones, most of the functionalities of these devices are offered through applications. There are currently over 2 million apps only on the official Google store, known as Google Play. This huge market with billions of users is tempting for attackers to develop and distribute their malicious apps (or malware). Mobile malware has raised explosively since 2009. Symantec reported an increase of 54% in the new mobile malware variants in 2017 as compared to the previous year. Additionally, more incentive has been provided for profit-driven malware by the growth of black markets. This rise has happened for Android malware as well since only 20% of devices are running the newest major version of Android OS based on Symantec report in 2018. Android continued to be the most targeted platform with the biggest number of attacks in 2015. After that year, attacks against the Android platform slowed for the first time as attackers were faced with improved security architectures though Android is still the main appealing target OS for attackers. Moreover, advanced types of Android malware are found which make use of extensive anit-analysis techniques to evade static or dynamic analysis. To address the security and privacy concerns of complex Android malware, this dissertation focuses on three main objectives. First of all, we propose a light-weight yet efficient method to identify risky Android applications. Next, we present a precise approach to characterize Android malware based on their malicious behavior. Finally, we propose an adaptive learning system to address the security concerns of obfuscation in Android malware. Identifying potentially dangerous and risky applications is an important step in Android malware analysis. To this end, we develop a triage system to rank applications based on their potential risk. Our approach, called TriFlow, relies on static features which are quick to obtain. TriFlow combines a probabilistic model to predict the existence of information flows with a metric of how significant a flow is in benign and malicious apps. Based on this, TriFlow provides a score for each application that can be used to prioritize analysis. It also provides the analysts with an explanatory report of the associated risk. Our tool can also be used as a complement with computationally expensive static and dynamic analysis tools. Another important step towards Android malware analysis lies in their accurate characterization. Labeling Android malware is challenging yet crucially important, as it helps to identify upcoming malware samples and threats. A key challenge is that different researchers and anti-virus vendors assign labels using their own criteria, and it is not known to what extent these labels are aligned with the apps’ real behavior. Based on this, we propose a new behavioral characterization method for Android apps based on their extracted information flows. As information flows can be used to track why and how apps use specific pieces of information, a flowbased characterization provides a relatively easy-to-interpret summary of the malware sample’s behavior. Not all Android malware are easy to analyze due to advanced and easyto-apply anti-analysis techniques that are available nowadays. Obfuscation is the most common anti-analysis technique that Android malware use to evade detection. Obfuscation techniques modify an app’s source (or machine) code in order to make it more difficult to analyze. This is typically applied to protect intellectual property in benign apps, or to hinder the process of extracting actionable information in the case of malware. Since malware analysis often requires considerable resource investment, detecting the particular obfuscation technique used may contribute to apply the right analysis tools, thus leading to some savings. Therefore, we propose AndrODet, a mechanism to detect three popular types of obfuscation in Android applications, namely identifier renaming, string encryption, and control flow obfuscation. AndrODet leverages online learning techniques, thus being suitable for resource-limited environments that need to operate in a continuous manner. We compare our results with a batch learning algorithm using a dataset of 34,962 apps from both malware and benign apps. Experimental results show that online learning approaches are not only able to compete with batch learning methods in terms of accuracy, but they also save significant amount of time and computational resources. Finally, we present a number of open research directions based on the outcome of this thesis.Android es el sistema operativo líder en teléfonos inteligentes (también denominados con la palabra inglesa smartphones), con una gran diferencia con respecto al resto de competidores. Las estadísticas muestran que el 88% de todos los smartphones vendidos a usuarios finales en el segundo trimestre de 2018 fueron teléfonos con sistema operativo Android. Independientemente de su sistema operativo, la mayoría de las funcionalidades de estos dispositivos se ofrecen a través de aplicaciones. Actualmente hay más de 2 millones de aplicaciones solo en la tienda oficial de Google, conocida como Google Play. Este enorme mercado con miles de millones de usuarios es tentador para los atacantes, que buscan distribuir sus aplicaciones malintencionadas (o malware). El malware para dispositivos móviles ha aumentado de forma exponencial desde 2009. Symantec ha detectado un aumento del 54% en las nuevas variantes de malware para dispositivos móviles en 2017 en comparación con el año anterior. Además, el crecimiento del mercado negro (es decir, plataformas no oficiales de descargas de aplicaciones) supone un incentivo para los programas maliciosos con fines lucrativos. Este aumento también ha ocurrido en el malware de Android, aprovechando la circunstancia de que solo el 20% de los dispositivos ejecutan la versión mas reciente del sistema operativo Android, de acuerdo con el informe de Symantec en 2018. De hecho, Android ha sido la plataforma que ha centrado los esfuerzos de los atacantes desde 2015, aunque los ataques decayeron ligeramente tras ese año debido a las mejoras de seguridad incorporadas en el sistema operativo. En todo caso, existen formas avanzadas de malware para Android que hacen uso de técnicas sofisticadas para evadir el análisis estático o dinámico. Para abordar los problemas de seguridad y privacidad que causa el malware en Android, esta Tesis se centra en tres objetivos principales. En primer lugar, se propone un método ligero y eficiente para identificar aplicaciones de Android que pueden suponer un riesgo. Por otra parte, se presenta un mecanismo para la caracterización del malware atendiendo a su comportamiento. Finalmente, se propone un mecanismo basado en aprendizaje adaptativo para la detección de algunos tipos de ofuscación que son empleados habitualmente en las aplicaciones maliciosas. Identificar aplicaciones potencialmente peligrosas y riesgosas es un paso importante en el análisis de malware de Android. Con este fin, en esta Tesis se desarrolla un mecanismo de clasificación (llamado TriFlow) que ordena las aplicaciones según su riesgo potencial. La aproximación se basa en características estáticas que se obtienen rápidamente, siendo de especial interés los flujos de información. Un flujo de información existe cuando un cierto dato es recibido o producido mediante una cierta función o llamada al sistema, y atraviesa la lógica de la aplicación hasta que llega a otra función. Así, TriFlow combina un modelo probabilístico para predecir la existencia de un flujo con una métrica de lo habitual que es encontrarlo en aplicaciones benignas y maliciosas. Con ello, TriFlow proporciona una puntuación para cada aplicación que puede utilizarse para priorizar su análisis. Al mismo tiempo, proporciona a los analistas un informe explicativo de las causas que motivan dicha valoración. Así, esta herramienta se puede utilizar como complemento a otras técnicas de análisis estático y dinámico que son mucho más costosas desde el punto de vista computacional. Otro paso importante hacia el análisis de malware de Android radica en caracterizar su comportamiento. Etiquetar el malware de Android es un desafío de crucial importancia, ya que ayuda a identificar las próximas muestras y amenazas de malware. Una cuestión relevante es que los diferentes investigadores y proveedores de antivirus asignan etiquetas utilizando sus propios criterios, de modo no se sabe en qué medida estas etiquetas están en línea con el comportamiento real de las aplicaciones. Sobre esta base, en esta Tesis se propone un nuevo método de caracterización de comportamiento para las aplicaciones de Android en función de sus flujos de información. Como dichos flujos se pueden usar para estudiar el uso de cada dato por parte de una aplicación, permiten proporcionar un resumen relativamente sencillo del comportamiento de una determinada muestra de malware. A pesar de la utilidad de las técnicas de análisis descritas, no todos los programas maliciosos de Android son fáciles de analizar debido al uso de técnicas anti-análisis que están disponibles en la actualidad. Entre ellas, la ofuscación es la técnica más común que se utiliza en el malware de Android para evadir la detección. Dicha técnica modifica el código de una aplicación para que sea más difícil de entender y analizar. Esto se suele aplicar para proteger la propiedad intelectual en aplicaciones benignas o para dificultar la obtención de pistas sobre su funcionamiento en el caso del malware. Dado que el análisis de malware a menudo requiere una inversión considerable de recursos, detectar la técnica de ofuscación que se ha utilizado en un caso particular puede contribuir a utilizar herramientas de análisis adecuadas, contribuyendo así a un cierto ahorro de recursos. Así, en esta Tesis se propone AndrODet, un mecanismo para detectar tres tipos populares de ofuscación, a saber, el renombrado de identificadores, cifrado de cadenas de texto y la modificación del flujo de control de la aplicación. AndrODet se basa en técnicas de aprendizaje automático en línea (online machine learning), por lo que es adecuado para entornos con recursos limitados que necesitan operar de forma continua, sin interrupción. Para medir su eficacia respecto de las técnicas de aprendizaje automático tradicionales, se comparan los resultados con un algoritmo de aprendizaje por lotes (batch learning) utilizando un dataset de 34.962 aplicaciones de malware y benignas. Los resultados experimentales muestran que el enfoque de aprendizaje en línea no solo es capaz de competir con el basado en lotes en términos de precisión, sino que también ahorra una gran cantidad de tiempo y recursos computacionales. Tras la exposición de las contribuciones anteriormente mencionadas, esta Tesis concluye con la identificación de una serie de líneas abiertas de investigación con el fin de alentar el desarrollo de trabajos futuros en esta dirección.Omid Mirzaei is a Ph.D. candidate in the Computer Security Lab (COSEC) at the Department of Computer Science and Engineering of Universidad Carlos III de Madrid (UC3M). His Ph.D. is funded by the Community of Madrid and the European Union through the research project CIBERDINE (Ref. S2013/ICE-3095).Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Gregorio Martínez Pérez.- Secretario: Pedro Peris López.- Vocal: Pablo Picazo Sánche
    • …
    corecore