1,005 research outputs found

    Network Properties for Robust Multilayer Infrastructure Systems: A Percolation Theory Review

    Get PDF
    Infrastructure systems, such as power, transportation, telecommunication, and water systems, are composed of multiple components which are interconnected and interdependent to produce and distribute essential goods and services. So, the robustness of infrastructure systems to resist disturbances is crucial for the durable performance of modern societies. Multilayer networks have been used to model the multiplicity and interrelation of infrastructure systems and percolation theory is the most common approach to quantify the robustness of such networks. This survey systematically reviews literature published between 2010 and 2021, on applying percolation theory to assess the robustness of infrastructure systems modeled as multilayer networks. We discussed all network properties applied to build infrastructure models. Among all properties, interdependency strength and communities were the most common network property whilst very few studies considered realistic attributes of infrastructure systems such as directed links and feedback conditions. The review highlights that the properties produced approximately similar model outcomes, in terms of detecting improvement or deterioration in the robustness of multilayer infrastructure networks, with few exceptions. Most of the studies focused on highly simplified synthetic models rather than models built by real datasets. Thus, this review suggests analyzing multiple properties in a single model to assess whether they boost or weaken the impact of each other. In addition, the effect size of different properties on the robustness of infrastructure systems should be quantified. It can support the design and planning of robust infrastructure systems by arranging and prioritizing the most effective properties

    Network Properties for Robust Multilayer Infrastructure Systems: A Percolation Theory Review

    Get PDF
    Infrastructure systems, such as power, transportation, telecommunication, and water systems, are composed of multiple components which are interconnected and interdependent to produce and distribute essential goods and services. So, the robustness of infrastructure systems to resist disturbances is crucial for the durable performance of modern societies. Multilayer networks have been used to model the multiplicity and interrelation of infrastructure systems and percolation theory is the most common approach to quantify the robustness of such networks. This survey systematically reviews literature published between 2010 and 2021, on applying percolation theory to assess the robustness of infrastructure systems modeled as multilayer networks. We discussed all network properties applied to build infrastructure models. Among all properties, interdependency strength and communities were the most common network property whilst very few studies considered realistic attributes of infrastructure systems such as directed links and feedback conditions. The review highlights that the properties produced approximately similar model outcomes, in terms of detecting improvement or deterioration in the robustness of multilayer infrastructure networks, with few exceptions. Most of the studies focused on highly simplified synthetic models rather than models built by real datasets. Thus, this review suggests analyzing multiple properties in a single model to assess whether they boost or weaken the impact of each other. In addition, the effect size of different properties on the robustness of infrastructure systems should be quantified. It can support the design and planning of robust infrastructure systems by arranging and prioritizing the most effective properties

    Fundamental Concepts of Cyber Resilience: Introduction and Overview

    Full text link
    Given the rapid evolution of threats to cyber systems, new management approaches are needed that address risk across all interdependent domains (i.e., physical, information, cognitive, and social) of cyber systems. Further, the traditional approach of hardening of cyber systems against identified threats has proven to be impossible. Therefore, in the same way that biological systems develop immunity as a way to respond to infections and other attacks, so too must cyber systems adapt to ever-changing threats that continue to attack vital system functions, and to bounce back from the effects of the attacks. Here, we explain the basic concepts of resilience in the context of systems, discuss related properties, and make business case of cyber resilience. We also offer a brief summary of ways to assess cyber resilience of a system, and approaches to improving cyber resilience.Comment: This is a preprint version of a chapter that appears in the book "Cyber Resilience of Systems and Networks," Springer 201

    Regionalized implementation strategy of smart automation within assembly systems in China

    Get PDF
    Produzierende Unternehmen in aufstrebenden Nationen wie China, sind bestrebt, die Produktivität der Produktion durch eine Verbesserung der Lean Produktion mit disruptiven Technologien zu erreichen. Smart Automation ist dabei eine vielversprechende Lösung, allerdings können Unternehmen aufgrund von mangelnden Ressourcen oft nicht alle Smart Automation Technologien gleichzeitig implementieren. Ebenso beeinflusst eine Vielzahl an Einflussfaktoren, wie z.B. Standortfaktoren. Dementsprechend herausfordernd ist die Auswahl und Priorisierung von Smart Automation Technologien in Form von Einführungsstrategien für produzierende Unternehmen. Der Stand der Forschung untersucht nur unzureichend die Analyse der Interdependenzen zwischen Standortfaktoren, Smart Automation Technologien und Key Performance Indikatoren (KPIs). Darüber hinaus mangelt es an einer Methode zur Ableitung der Einführungsstrategie von Smart Automation Technologien unter Berücksichtigung dieser Interdependenzen. Entsprechend trägt diese Arbeit dazu bei, eine regionalisierte Einführungsstrategie von Smart Automation Technologien in Montagesystemen zu ermöglichen. Zunächst werden die Standortfaktoren, Smart Automation Technologien und KPIs identifiziert. In einem zweiten Schritt werden, mit Hilfe von qualitativen und quantitativen Analysen, die Interdependenzen bestimmt. Anschließend werden diese Interdependenzen auf ein Montagesystem mittels hybrider Modellierung und Simulation übertragen. Im vierten Schritt wird eine regionalisierte Einführungsstrategie durch eine Optimierung und eine Monte-Carlo-Simulation abgeleitet. Die Methodik wurde im Rahmen des deutsch-chinesischen Forschungsprojekts I4TP entwickelt, das vom Bundesministerium für Bildung und Forschung (BMBF) unterstützt wird. Die Validierung wurde erfolgreich mit einem produzierenden Unternehmen in Beijing durchgeführt. Die entwickelte Methodik stellt einen neuartigen Ansatz zur Entscheidungsunterstützung bei der Entwicklung einer regionalisierten Einführungsstrategie für Smart Automation Technologien in Montagesystemen dar. Dadurch sind produzierende Unter-nehmen in der Lage, individuelle Einführungsstrategien für disruptive Technologien auf Basis wissenschaftlicher und rationaler Analysen effektiv abzuleiten

    Analysis of Resilience Situations for Complex Engineered Systems – the Resilience Holon

    Get PDF
    Improving the resilience of complex engineered and engineering systems (CES) includes planning for complex resilience situations, in which there may be multiple threats, interactions, and disruptions. One challenge in the modeling of CES is the identification of how interactions in a complex situation occur and their combined influence on CES resilience. This article presents a resilience holon that can be used to analyze complex resilience situations. It is made up of 24 elements (defining types of resilience, threats, interactions, and disruptions), which have varying importance to specific situations. Holons can be linked together hierarchically or in a network. An application of the resilience holon to a documented real-world resilience situation, widespread flooding in a city, illustrates its use. Pathways taken by threats and disruptions, as the flood effects cascaded through the city, are shown as connections between holons. The resilience holon could be used to decompose diverse resilience situations involving CES, to identify where critical vulnerability points are and how the whole resilience situation could be improved. The visual nature of the resilience holon could be used in an interactive way, allowing stakeholders to better understand the full resilience picture of CES that they use or operate

    Water planning in an age of change

    Full text link
    This review paper examines a variety of methodologies that underpin current water planning in the United States – spanning the city, state, and Federal scales – and identifies ways in which changing realities and greater interdependencies between various different critical infrastructures are driving the need for new water planning approaches and processes. Specifically, new sources of uncertainty and their implications are examined, and challenges relating to water supply, allocation, decision making, safety and security, and the information and processes of planning are delineated. In this context, the usefulness of adding scenario planning to current water planning processes is assessed, and ways in which it can be implemented effectively are described. Opportunities for One Water planning to be augmented by critical infrastructure planning and enhanced risk mitigation are also discussed. Recommendations are articulated that are relevant to states, cities, and utility agencies, in order to ensure that they are more resiliently prepared for a substantially more uncertain planning environment in the future, with particular attention to critical infrastructure for water and for other services and the interrelationships between them

    On the Definition of Cyber-Physical Resilience in Power Systems

    Full text link
    In recent years, advanced sensors, intelligent automation, communication networks, and information technologies have been integrated into the electric grid to enhance its performance and efficiency. Integrating these new technologies has resulted in more interconnections and interdependencies between the physical and cyber components of the grid. Natural disasters and man-made perturbations have begun to threaten grid integrity more often. Urban infrastructure networks are highly reliant on the electric grid and consequently, the vulnerability of infrastructure networks to electric grid outages is becoming a major global concern. In order to minimize the economic, social, and political impacts of power system outages, the grid must be resilient. The concept of a power system cyber-physical resilience centers around maintaining system states at a stable level in the presence of disturbances. Resilience is a multidimensional property of the electric grid, it requires managing disturbances originating from physical component failures, cyber component malfunctions, and human attacks. In the electric grid community, there is not a clear and universally accepted definition of cyber-physical resilience. This paper focuses on the definition of resilience for the electric grid and reviews key concepts related to system resilience. This paper aims to advance the field not only by adding cyber-physical resilience concepts to power systems vocabulary, but also by proposing a new way of thinking about grid operation with unexpected disturbances and hazards and leveraging distributed energy resources.Comment: 20 pages. This is a modified versio

    Quantitative dependability and interdependency models for large-scale cyber-physical systems

    Get PDF
    Cyber-physical systems link cyber infrastructure with physical processes through an integrated network of physical components, sensors, actuators, and computers that are interconnected by communication links. Modern critical infrastructures such as smart grids, intelligent water distribution networks, and intelligent transportation systems are prominent examples of cyber-physical systems. Developed countries are entirely reliant on these critical infrastructures, hence the need for rigorous assessment of the trustworthiness of these systems. The objective of this research is quantitative modeling of dependability attributes -- including reliability and survivability -- of cyber-physical systems, with domain-specific case studies on smart grids and intelligent water distribution networks. To this end, we make the following research contributions: i) quantifying, in terms of loss of reliability and survivability, the effect of introducing computing and communication technologies; and ii) identifying and quantifying interdependencies in cyber-physical systems and investigating their effect on fault propagation paths and degradation of dependability attributes. Our proposed approach relies on observation of system behavior in response to disruptive events. We utilize a Markovian technique to formalize a unified reliability model. For survivability evaluation, we capture temporal changes to a service index chosen to represent the extent of functionality retained. In modeling of interdependency, we apply correlation and causation analyses to identify links and use graph-theoretical metrics for quantifying them. The metrics and models we propose can be instrumental in guiding investments in fortification of and failure mitigation for critical infrastructures. To verify the success of our proposed approach in meeting these goals, we introduce a failure prediction tool capable of identifying system components that are prone to failure as a result of a specific disruptive event. Our prediction tool can enable timely preventative actions and mitigate the consequences of accidental failures and malicious attacks --Abstract, page iii
    corecore