4,466 research outputs found

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Cooperative localisation in underwater robotic swarms for ocean bottom seismic imaging.

    Get PDF
    Spatial information must be collected alongside the data modality of interest in wide variety of sub-sea applications, such as deep sea exploration, environmental monitoring, geological and ecological research, and samples collection. Ocean-bottom seismic surveys are vital for oil and gas exploration, and for productivity enhancement of an existing production facility. Ocean-bottom seismic sensors are deployed on the seabed to acquire those surveys. Node deployment methods used in industry today are costly, time-consuming and unusable in deep oceans. This study proposes the autonomous deployment of ocean-bottom seismic nodes, implemented by a swarm of Autonomous Underwater Vehicles (AUVs). In autonomous deployment of ocean-bottom seismic nodes, a swarm of sensor-equipped AUVs are deployed to achieve ocean-bottom seismic imaging through collaboration and communication. However, the severely limited bandwidth of underwater acoustic communications and the high cost of maritime assets limit the number of AUVs that can be deployed for experiments. A holistic fuzzy-based localisation framework for large underwater robotic swarms (i.e. with hundreds of AUVs) to dynamically fuse multiple position estimates of an autonomous underwater vehicle is proposed. Simplicity, exibility and scalability are the main three advantages inherent in the proposed localisation framework, when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation (by 16.53% and 35.17% respectively) at a swarm size of 150 AUVs when compared to the Extended Kalman Filter based localisation with round-robin scheduling. The proposed fuzzy based localisation method requires fuzzy rules and fuzzy set parameters tuning, if the deployment scenario is changed. Therefore a cooperative localisation scheme that relies on a scalar localisation confidence value is proposed. A swarm subset is navigationally aided by ultra-short baseline and a swarm subset (i.e. navigation beacons) is configured to broadcast navigation aids (i.e. range-only), once their confidence values are higher than a predetermined confidence threshold. The confidence value and navigation beacons subset size are two key parameters for the proposed algorithm, so that they are optimised using the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its localisation performance. Confidence value-based localisation is proposed to control the cooperation dynamics among the swarm agents, in terms of aiding acoustic exteroceptive sensors. Given the error characteristics of a commercially available ultra-short baseline system and the covariance matrix of a trilaterated underwater vehicle position, dead reckoning navigation - aided by Extended Kalman Filter-based acoustic exteroceptive sensors - is performed and controlled by the vehicle's confidence value. The proposed confidence-based localisation algorithm has significantly improved the entire swarm mean localisation error when compared to the fuzzy-based and round-robin Extended Kalman Filter-based localisation methods (by 67.10% and 59.28% respectively, at a swarm size of 150 AUVs). The proposed fuzzy-based and confidence-based localisation algorithms for cooperative underwater robotic swarms are validated on a co-simulation platform. A physics-based co-simulation platform that considers an environment's hydrodynamics, industrial grade inertial measurement unit and underwater acoustic communications characteristics is implemented for validation and optimisation purposes
    • …
    corecore