918 research outputs found

    Lego Based Computer Communication for Business and Learning

    Get PDF

    Systematic review on which analytics and learning methodologies are applied in primary and secondary education in the learning of robotics sensors

    Full text link
    Robotics technology has become increasingly common both for businesses and for private citizens. Primary and secondary schools, as a mirror of societal evolution, have increasingly integrated science, technology, engineering and math concepts into their curricula. Our research questions are: “In teaching robotics to primary and secondary school students, which pedagogical-methodological interventions result in better understanding and knowledge in the use of sensors in educational robotics?”, and “In teaching robotics to primary and secondary school students, which analytical methods related to Learning Analytics processes are proposed to analyze and reflect on students’ behavior in their learning of concepts and skills of sensors in educational robotics?”. To answer these questions, we have carried out a systematic review of the literature in the Web of Science and Scopus databases regarding robotics sensors in primary and secondary education, and Learning Analytics processes. We applied PRISMA methodology and reviewed a total of 24 articles. The results show a consensus about the use of the Learning by Doing and Project-Based Learning methodologies, including their different variations, as the most common methodology for achieving optimal engagement, motivation and performance in students’ learning. Finally, future lines of research are identified from this study.This research was co-funded by the support of the Secretaria d’Universitats i Recerca of the Department of Business and Knowledge of the Generalitat de Catalunya with the help of 2017 SGR 93

    EVALUATING ENGINEERING LEARNING AND GENDER NEUTRALITY FOR THE PRODUCT DESIGN OF A MODULAR ROBOTIC KIT

    Get PDF
    The development of a system is informed from design factors in order to success- fully support the intended usability from the perceived affordances [1]. The theory of ‘Human Centered Design’ champions that these factors be derived from the user itself. It is based on exploiting these affordances that the boundary of technology is pushed to sometimes invent new methods or sometimes approach a problem from newer perspectives. This thesis is an example where we inform our design rationales from children in order to develop a gender neutral modular robotic toy kit
    • 

    corecore