713 research outputs found

    Improving k-nn search and subspace clustering based on local intrinsic dimensionality

    Get PDF
    In several novel applications such as multimedia and recommender systems, data is often represented as object feature vectors in high-dimensional spaces. The high-dimensional data is always a challenge for state-of-the-art algorithms, because of the so-called curse of dimensionality . As the dimensionality increases, the discriminative ability of similarity measures diminishes to the point where many data analysis algorithms, such as similarity search and clustering, that depend on them lose their effectiveness. One way to handle this challenge is by selecting the most important features, which is essential for providing compact object representations as well as improving the overall search and clustering performance. Having compact feature vectors can further reduce the storage space and the computational complexity of search and learning tasks. Support-Weighted Intrinsic Dimensionality (support-weighted ID) is a new promising feature selection criterion that estimates the contribution of each feature to the overall intrinsic dimensionality. Support-weighted ID identifies relevant features locally for each object, and penalizes those features that have locally lower discriminative power as well as higher density. In fact, support-weighted ID measures the ability of each feature to locally discriminate between objects in the dataset. Based on support-weighted ID, this dissertation introduces three main research contributions: First, this dissertation proposes NNWID-Descent, a similarity graph construction method that utilizes the support-weighted ID criterion to identify and retain relevant features locally for each object and enhance the overall graph quality. Second, with the aim to improve the accuracy and performance of cluster analysis, this dissertation introduces k-LIDoids, a subspace clustering algorithm that extends the utility of support-weighted ID within a clustering framework in order to gradually select the subset of informative and important features per cluster. k-LIDoids is able to construct clusters together with finding a low dimensional subspace for each cluster. Finally, using the compact object and cluster representations from NNWID-Descent and k-LIDoids, this dissertation defines LID-Fingerprint, a new binary fingerprinting and multi-level indexing framework for the high-dimensional data. LID-Fingerprint can be used for hiding the information as a way of preventing passive adversaries as well as providing an efficient and secure similarity search and retrieval for the data stored on the cloud. When compared to other state-of-the-art algorithms, the good practical performance provides an evidence for the effectiveness of the proposed algorithms for the data in high-dimensional spaces

    Dissimilarity-based learning for complex data

    Get PDF
    Mokbel B. Dissimilarity-based learning for complex data. Bielefeld: Universität Bielefeld; 2016.Rapid advances of information technology have entailed an ever increasing amount of digital data, which raises the demand for powerful data mining and machine learning tools. Due to modern methods for gathering, preprocessing, and storing information, the collected data become more and more complex: a simple vectorial representation, and comparison in terms of the Euclidean distance is often no longer appropriate to capture relevant aspects in the data. Instead, problem-adapted similarity or dissimilarity measures refer directly to the given encoding scheme, allowing to treat information constituents in a relational manner. This thesis addresses several challenges of complex data sets and their representation in the context of machine learning. The goal is to investigate possible remedies, and propose corresponding improvements of established methods, accompanied by examples from various application domains. The main scientific contributions are the following: (I) Many well-established machine learning techniques are restricted to vectorial input data only. Therefore, we propose the extension of two popular prototype-based clustering and classification algorithms to non-negative symmetric dissimilarity matrices. (II) Some dissimilarity measures incorporate a fine-grained parameterization, which allows to configure the comparison scheme with respect to the given data and the problem at hand. However, finding adequate parameters can be hard or even impossible for human users, due to the intricate effects of parameter changes and the lack of detailed prior knowledge. Therefore, we propose to integrate a metric learning scheme into a dissimilarity-based classifier, which can automatically adapt the parameters of a sequence alignment measure according to the given classification task. (III) A valuable instrument to make complex data sets accessible are dimensionality reduction techniques, which can provide an approximate low-dimensional embedding of the given data set, and, as a special case, a planar map to visualize the data's neighborhood structure. To assess the reliability of such an embedding, we propose the extension of a well-known quality measure to enable a fine-grained, tractable quantitative analysis, which can be integrated into a visualization. This tool can also help to compare different dissimilarity measures (and parameter settings), if ground truth is not available. (IV) All techniques are demonstrated on real-world examples from a variety of application domains, including bioinformatics, motion capturing, music, and education

    Hypothesis-based image segmentation for object learning and recognition

    Get PDF
    Denecke A. Hypothesis-based image segmentation for object learning and recognition. Bielefeld: Universität Bielefeld; 2010.This thesis addresses the figure-ground segmentation problem in the context of complex systems for automatic object recognition as well as for the online and interactive acquisition of visual representations. First the problem of image segmentation in general terms and next its importance for object learning in current state-of-the-art systems is introduced. Secondly a method using artificial neural networks is presented. This approach on the basis of Generalized Learning Vector Quantization is investigated in challenging scenarios such as the real-time figure-ground segmentation of complex shaped objects under continuously changing environment conditions. The ability to fulfill these requirements characterizes the novelty of the approach compared to state-of-the-art methods. Finally our technique is extended towards online adaption of model complexity and the integration of several segmentation cues. This yields a framework for object segmentation that is applicable to improve current systems for visual object learning and recognition
    corecore